Introduction to Computer Programming for the Physical Sciences
Timothy Brandt

Chapter 1

This course will introduce you to the use of a computer to do numerical analyses. You’ll almost certainly
need to do some computing in the future, whether in physics class, in lab, in some other class, or in a job.
My goal for this class is that you are comfortable solving equations, doing basic computations, making plots,
and fitting data on a computer.

Computers have improved enormously in recent years. This course isn’t about computers themselves, though,
so I won’t discuss anything about they actually work. The only thing I would like you to know about com-
puters for now is that they take a specific set of instructions and execute them exactly. Computers don’t
think, so an error is almost always the fault of the programmer. This is both frustrating and liberating. It
means that all of the responsibility is on you, but also that you can fix anything that goes wrong. Part of
this class will also try to instill good habits that will make it easier to avoid mistakes (also called bugs), and
easier to find and correct them.

A computer language is a set of instructions that a computer can understand. In the bad old days, pro-
grammers would have to write in machine code, which the computer hardware can interpret directly. Such
code isn’t very readable to humans, so it was a revolution of sorts when the first compiled languages came
out. The compiler was invented by Grace Murray Hopper, who insisted that it would be easier for a few
people to write a program to translate English commands to machine code than to teach many people to
write machine code. So she did exactly that, and we are forever in her debt.

There are many computer languages, and I am guessing that you will have heard of some of them (C, C++,
Fortran, Matlab, Python, Java, BASIC, etc.). This course will use the Python language. Python is a rel-
atively recent language under continual development. It is an interpreted language, which means that the
computer reads and executes one line at a time. This is different from a compiled language (like C, C++,
Fortran, etc.) where a compiler first translates your entire program into machine code, and then you run it.
Python is fairly easy to start using, certainly easier (in my opinion) than something like C or Fortran. We
will be using Python in conjunction with Jupyter notebooks. This is another recent development that allows
you to combine comments, notes in both regular text and Latex (a way of formatting nice math expressions
that physicists often use), code, and figures all in one nice package.

For this class, I will urge you to use either the Anaconda Python distribution or Google Colab. Both are
free. Anaconda Python will make many things easier, but it does require you to install (free) software. If
you cannot install it on your machine, you will be able to do everything in this class with Google Colab. For
that, you need only a web browser and an internet connection.

At this stage, you may or may not have written a line of code before. If you haven’t, you will do so
shortly at your first section. Here, I will introduce a bit of vocabulary to have around as a quick reference.
This is far from complete but should introduce a lot of the terminology that I will use. If I say a word and
you don’t know what it means, please ask. Many of these words have the same meaning that they do in math.

A Line of Code

A line of code, usually synonymous with a statement, tells the computer to do something. You can also
include lines or notes that you want a human to read, but you do not want a computer to execute. These
are called comments. Comments in Python are anything that comes after the # symbol. The computer
will ignore this symbol and anything that comes after it (until the next line). For example,

x = 5 # Set the variable x equal to the number five

means exactly the same thing to a computer as

x =5

The line

The code below does the integral
is completely ignored.

Selected Terminology

variable: some text (like a word) that stores a value. The text must start with a letter or underscore.

comment: text to help a human understand code but which the computer ignores

function: a set of instructions to take some inputs (called argument(s)), do something, and produce an
output

loop: a set of instructions that is executed many times

conditional: a set of instructions that may or may not be executed (think if/else)

bug: a mistake, usually one that results in an incorrect answer, unexpected behavior, a crash, etc.

module: a Python package that includes functions, quantities, all sorts of things. We’ll use the modules
numpy, scipy, and matplotlib in this course.

floating point: a real number (not necessarily an integer) that the computer stores in scientific notation

lambda: this is a special Python thing for defining a function in one line—you cannot name a wavelength
variable lambda!

Basic arithmetic

The simplest thing you might do a computer is arithmetic, like you would do on a handheld calculator. Just
like for a calculator, you have basic operations like +, =, *, /, and ** (the last one means to raise to a power).
For example, to compute

y=a®+5x+3(z—1) (1)

you could write

y = x*%2 + b*x + 3%(z - 1)

This will store the result of the right-hand-side of the equation to the variable y. Future lines of code in your
program can do things with the variable y. For example, later on, you could write q = y**2. Remember
that Python will follow the standard order of operations! A great many bugs result from following an order
of operations that you did not expect.

A quick note about scientific notation

We write numbers in scientific notation as, e.g.,
c=3x10° (2)

(in ST units). You may well need the value of ¢ for your calculation. You could write

c = 3%10%x*8

However, you should not do this. Instead, please write

c = 3e8

These are interpreted very differently by the computer. The first one takes the integer 10, raises it to the 8*®
power, and then multiplies this by 3 and assigns the value to c. The second one assigns the value of 3 x 108
directly to the variable c. The second way is faster, easier to read, and less vulnerable to bugs, as you will
see or have seen in your first section. For a quick look at one reason why you should write scientific notation
as, e.g., 3e8, try the following:

print (1/3e8+%*2)
print (1/3*x10%*8*%2)

Which of the lines above gives the correct answer to 1/¢2? Can you see why given the order of operations?

Also, as a quick note, there is a largest number and a smallest number (i.e. closest to zero) that a computer
can represent because of details of how it stores numbers in memory. Any number larger than about 10398
will be stored as infinity (and will generate a warning called overflow), while a number closer to zero than
1073% will be stored as zero (and generate an underflow warning). If you get one of these warnings, it’s
because some part of your program gave a result that was beyond one of these numbers. The reason why is
that a computer has a specific way of representing a floating point number, as

+a-2° (3)

where there are only 64 bits (zeros or ones) to store the sign, the value of a (between one and two), the sign
of b, and the value of b. The largest b that can be represented by 10 bits is 219 — 1, and 22"~ ~ 10308,

Libraries of Functions

Nobody wants to write every function from scratch—you want to write sin(x) rather than implementing a
function for sine that is accurate to double precision floating point. You probably also don’t want to write
your own interfaces to the standard input and output. In any modern programming language, all of these
things are done in standard libraries.

In Python, our libraries of functions are typically found within things called modules. A few of these have
become very standard and will be used throughout this course: numpy, scipy, and matplotlib. You will
almost always import these three in the first few lines of your program. These three modules include all of
the plotting and math routines you will need, along with much, much more. We will take a closer look at
these later.

Good Coding Practice

Physicists are horrible programmers. It is a stereotype that isn’t quite as accurate as it used to be. To be
fair, there are a lot of bad programmers, to the point where the problem is an xked strip:
https://xkcd.com/2030/

Being a bad programmer generally means writing code that is hard to follow and, somewhat relatedly, likely
to have errors. All programmers make errors (bugs), but clear and clean code typically has fewer of them
and is much easier to debug.

Whenever you write a program, you should make it readable for someone who initially has no idea what
you are doing. There is a very good reason for this. Chances are good that you will come back to this code
months later and need to fix something or want to reuse something. If your code is unintelligible, you will
have to rewrite it from scratch. And debugging unintelligible code is a nightmare. For Python, keep the
following general guidelines in mind:

e Use comments, but don’t overuse them. Make the lines of code themselves as clear and intuitive
as possible. In a Jupyter notebook, as we’ll see in a bit, comments are special.

e Think before you type. Ask yourself (and google) whether there is a nice, clear function in numpy
or scipy that does what you need. Often, the answer is yes.

e Choose sensible and consistent names for variables. There is a balance here. Maybe x25 is a
poor choice, for example—it means nothing. Something like effective_temp_on_stellar_surface is
nice and descriptive, but try reading the Planck function with a lot of similarly named variables in it.
Maybe teff_star strikes a balance in your case.

e Fewer lines are better. There is no prize for the longest program. The principles of coding are the
same as those for scientific and practical writing: you should strive to express yourself as clearly and
concisely as possible.

e If you have to choose between being clear and concise, be clear.

e Only optimize your code for performance where necessary. Optimizing sometimes means
sacrificing clarity or readability. Only do this if you care how long your code takes to run. More
philosophically, optimizing code takes time, and your time is the most valuable resource of all.

There are lot more guidelines in any set of coding standards, but please keep these in mind. It will make it
much easier for us to grade your work, and it will make it much easier for you to re-use bits and pieces of
those assignments in your own work.

Jupyter Notebooks

Jupyter is a relatively new platform for data science that provides a convenient way to share code. You will
submit your assignments electronically as Jupyter notebooks (or as pdfs). We will use Jupyter exclusively
in this class for a few reasons:

e We don’t have to compile or run your code. Every machine’s environment is different; my
version of Python or of a particular package may not match yours. I do not want to run your code on
my computer.

e You can easily share your work, including with future-you. Make it a pdf, an html, and you
won’t have to re-run your code and worry about packages breaking either! Just take the pieces you
want to re-use.

e It looks nice. Rather than having to read through plain text code and separately flip through figures,
we can see them naturally, together.

You should be installing the anaconda Python distribution, version 3.10. You can then type
jupyter notebook

into a command prompt to launch the notebook server. You can also launch the notebook server from an
app. Or, if you cannot get Jupyter installed on your system, you can use the same thing online through
Google Colab. A well-structured Juptyer notebook can be almost indistinguishable from the outline of a
paper, or a section of a paper.

A Final Note

Programming can seem intimidating and scary. But you will all get the hang of it. Just remember the
most important thing: make your ideas, and your intentions, clear in everything that you write.
Computers almost never make mistakes, but they will blindly follow incorrect instructions. When you make
your code and your thought process clear, you are helping yourself more than anyone else. The person who
will debug your code, and who might use it later and have to understand it all over again, is you.

Introduction to Computer Programming for the Physical Sciences
Timothy Brandt

Chapter 2

Functions

Last section, we introduced programming, Python, and Jupyter notebooks. You should have all opened a
notebook and written a few lines of code. Now, we will introduce a few concepts that you will need to do
things that would be difficult, or impossible, on a calculator. The first thing that we will introduce is a
function. A function in math is a set of instructions for taking input(s) and mapping them to output(s).
In order to be a function, the input must uniquely determine the output. In a program, the word function
means the same thing: it takes one or more inputs (called arguments), does something, and produces one
or more outputs. As an example,

y = numpy.sin(0.5)

will assign sin(0.5) to the variable y. Sine is a function included in the numpy module, which we will spend
more time talking about later. For now, I'll be using functions from numpy.

You will both use built-in functions and write your own. Writing a function means giving the full set of
instructions for how to get an output from an input. It will also use two Python commands: def, which tells
Python that you are defining something, and return, which tells Python what the function should return
as its output. As an example, we can define a function to take the square of a number:

J(@) = 2.
This function in Python looks like the following:

def f(x):
return x**2

You can see the use of def to define the function, and the use of return to show that the function should
return the square of the argument. The line defining the function also ends with a colon. Finally, notice how
the line below the function definition is indented (you indent with four spaces, or with tabs). Indenting in
Python is very important: it is how Python knows that the following lines are part of this function. Once
you want to write a line that is not part of the function, it should not be indented inside the function. For
example, the following:

def f(x):
return x**2
print(£(5))

will print 25 to the screen (f(5)). The print statement is not indented inside the function, so it is not part
of the function. What if I write

def f(x):
return x**2

print (£ (5))

What do you think will happen?

The print statement is now inside the function, but it comes after the return statement. Python never
actually does anything for this print statement.

Now, I could probably have done a better job with my function definition: seeing f (x) later in my code is
probably not going to be helpful. Your functions can have any name you want, as long as it follows the same
rules as variable names. How about a better name for my function:

def sqr(x):
return x**2

That’s better. Now, I can call sqr(x) later and understand what I am doing.

Let’s do one more example. Write a function, call it increment (), that adds one to its argument and returns
the result.

We might write

def increment(x):
return x + 1

One more conceptual question that puzzled me for a while when I started to learn coding. I named the func-
tion sqr; that name is now reserved unless I redefine it later. What about x, which I used in the definition
of the function (def sqr(x))? The answer is that this only refers to x inside the function, and nowhere else
in my program. I could have used any valid variable and it wouldn’t matter. In fact, I could even use a
variable that I had defined elsewhere. To see this, try

x =25

def sqr(x):
return x**2

print (x)

What do you think we will get? Try it out!

For last section, you debugged some code that attempted to calculate the Planck function. We could also
define the Planck function, which would make things a lot easier if you wanted to re-use it. The Planck
function depends on two variables, not one: temperature T and frequency v (or wavelength A, but remem-
ber that lambda can’t be a variable name!). So, I can define the Planck function as a function of two variables:

def Bnu(T, nu):
c = 2.998e8
kB = 1.381e-23
h = 6.646e-34
return 2xh*nu**3/c**2/(np.exp (h*nu/ (kB+T)) - 1)

In this case, c, kB, and h are only available inside the function; you can’t get them outside the function. You
can then call

print (Bnu(500, 5e13))
or use it in another piece of your calculation.
If you look closely, you can see that there is a function used within this function: exp() is within Bnu().

This is completely fine. You can use any function within a module that you import, or any function that
you have previously defined within this Jupyter notebook. You can even pass a function to another function.

Take the following example:

def func_sqr(f, x):
return f(x)**2

I pass the function f, and within func_sqr, I call £(x). This returns the square of the function f. For
example, I could use this to compute sin® z as

sinsq.x = func_sqr(np.sin, x)
This is exactly equivalent to
sinsq-x = np.sin(x)**2

It is a direct replacement of £ with np.sin. Both lines above are fine in Python, so this is a valid way to
pass a function.

Now, I cannot write (np.sin**2) (x). That requires Python to figure out what np.sin**2 is, and it tries
to square np.sin, to multiply the function by itself. But Python can’t multiply functions (or indeed do
any binary operation between functions). If you try to get, for example,

np.sin*np.cos

you’ll get another error. Two functions could have completely different sets of arguments, so how can Python
multiply them together? And they might return something other than a number, something that cannot be
squared. Imagine, for example, a function of two variables (like the two-argument arctangent) and a function
of one variable. What would it mean to multiply them together? What argument(s) would such a function

take?

In sum, if you're not sure whether your passing of a function is legal, you can try the following test. Copy
and paste the argument directly into the function call. For example:

val = func_sqr(np.sin**2, 5)

would end up calling something like

(np.sin**2) (5)

That’s not the correct way of writing the line of code, so this will break. But if you write

val = func_sqr(np.sin, 5)

would end up calling something like

np.sin(5)

which is fine. If your code passes this search-and-replace test, it should work for passing the function.
Conditionals

Often, when you write a program, you want to do something differently depending on some condition. As

an example, suppose we want to define the absolute value function, abs(x). This should return x if x > 0,
and -x otherwise. To do this, we can use Python’s if statement. An example will show how it works:

if 1 > 0:

print("One is greater than zero.")
else:

print("Zero is greater than one.")

The message inside quotation marks is called a string, and we can use it to print a message. We won’t
use strings much in this class. Other than that, there are a couple of things to notice. Right after the if
statement comes something that is either True or False. That statement ends with a colon. Then, the next
line is indented: it is only executed if the if statement is True. Below this is an else statement, indented at
the same level as if. It also gets a colon. Then, below the else statement, is some code that is only executed
if the if statement turns out to be False.

Now let’s use if/else to write an absolute value function, called abs(x).

def abs(x):
if x >= 0:
return x
else:

return -x

When you use if/else, you will pass the if statement something that is either True or False (it is boolean).
We have seen a few examples of boolean statements, for example

1>0

is True (you can actually set something to True in Python using True). Here are a two more examples of
True and False statements:

0>=1 # This is False
== 0 # This is True

The first one asks if 0 > 1. The second looks a little unusual. It’s not a typo. Remember that a single equal
sign assigns a value to a variable. So we can’t write 0 = 0: this would attempt to assign the value zero to
the variable 0. The double equal sign tests for equality.

Now let’s apply the ideas of functions and conditionals to the sinc function, which comes up a lot in Fourier
transforms and signal processing. The sinc function is defined as

1 z=0
sinc(x) = i 1
(z) {Slgm otherwise (1)

It is available in numpy, but let’s see how we could write it using sine. You’ll need to handle the case of z = 0
with an if statement and a test for equality:

def sinc(x):
if x ==
return 1
else:
return np.sin(x)/x

Finally, let’s apply both of the ideas from this class to one more physics scenario. The electric potential a

distance r from the center of a spherical shell of charge @ and radius R is

QSR
V(r)=2< .7 2
@ {g e @

where k is Coulomb’s constant, 8.988 x 10° in SI units. The potential is constant inside the shell. How would
you write the electric potential of the shell as a function of @, r, and R?

def potential_sphere(Q, R, r):
k = 8.988e9
if R < r:
return k*Q/R
else:
return k*Q/r

Note: you could write this more compactly using the function max(a, b):
def potential sphere(Q, R, r):
k = 8.988e9

return k*Q/max(R, r)

This is certainly shorter (i.e. fewer lines of code). But which do you think is clearer?

Introduction to Computer Programming for the Physical Sciences
Timothy Brandt

Chapter 3

Loops

In this class we will introduce loops. Loops are essential to a large fraction of programs. In physics, we have
seen examples so far of single calculations. But sometimes we need to do something more than once. For
example, if we want to solve an equation numerically, we usually start with a good guess and then make
progressively better guesses. This requires a loop.

There are two basic ways of writing a loop in python: for, and while. We will start with a for loop to
show you how that works. The for statement will start a line. We will then use two special constructions
that you will get used to: in, and range. range makes a counter. For example, range (5) counts from zero

up to (but not including) five: 0, 1, 2, 3, 4.

for i in range(5):
print (i)

This loop takes i from zero to four and prints it. The variable i is a counter here, and you can use it in the
loop. Just like for a function definition and the if/else statement, everything that belongs to the loop is
indented.
We can use this loop to add up all of the numbers from zero to four, inclusive. To do this, we start with a
value and then add to it at each step in the loop. I'll use total for the variable representing the total, and
T’ll start by setting it equal to zero:
total = 0
Now we will use a loop to add to the total:
for i in range(5):

total = total + i

print(total)

And you get the answer, 10. You can empirically verify the formula

S N(N +1) 1

Within the loop, you add the counter i to the total at each step.

Now let’s apply this to a famous series in math:
>5=x ®
72 == —.
—=n 6
First, let’s print the answer:

print(np.pi**2/6)

Now let’s use a loop in the same way as before. We will start at one rather than zero, so we will use, e.g.,
range(1, 10) to run from 1 to 9, inclusive:

total = 0

for i in range(1l, 10):
total = total + 1/i**2
print(i, total)

So, the sum from 1 through 9 is about 1.54, compared to 1.645 for 72 /6.

Now let’s see how while loops work, and use one to see how long it takes to get within 1% of the right
answer. A while loop looks a little different. It starts with while, then a condition that could be either
True or False, then a colon. The loop will stop as soon as the condition is False. For example:

total = 0

i=0

while total < np.pi**2/6:
i=1i+1
total = total + 1/ix*2

What do you think this will do?

This is an infinite loop. The sum will never actually be 72/6; it will always be a little bit less. If you run
this in a code cell it will keep going forever. Luckily, Jupyter notebooks have an Interrupt Kernel option
(Kernel — Interrupt). Clicking that should end the infinite loop and let you fix it.

We don’t want to run things until we get the exact answer, because when we iterate toward the right answer
we will never actually get there. We want to keep going until we are close. There are two ways that we can
define close:

1. Our answer is almost the same as the correct answer; or
2. The change we are making at a given step is very small.

In the example we have now, we know the correct answer (72/6), so we could use either approach. Other times
we might not know the correct answer, so we would have to use Option 2. Let’s see how we could apply both
to fix our infinite loop. First, let’s fix it using the first option, with our knowledge of the correct answer. The
problem is the comparison statement: we want the comparison to be small, less than some tolerance. I'll set

tolerance = le-5

to require that I be within 10~° of the right answer. My comparison statement should then compare my total
with the right answer. I will want to use absolute values for the comparison: I could be within tolerance
of the right answer either on the high side or the low side. The absolute error is then

error = np.abs(total - correct_value)

T’ll give all of you a minute to rewrite the infinite loop so that it stops when the answer we have is within
tolerance of the correct answer ...

tolerance = le-5

total = 0

i=20

while np.abs(total - np.pi**2/6) > tolerance:
i=1+1

total = total + 1/i%%*2

Now it will break. Notice how the loop keeps going while the error is larger than the tolerance. The sign of
the comparison is important. I can see how many steps that took by printing out the value of i at the end,
adding the one statement

print (i)
and I get 100001 (about 10° steps). That’s a lot!

In this case I compared the total with the right answer. I could instead decide to stop when the increment
is small, i.e., close to zero. This is a comparison that is easiest to make inside the loop. I can do that by
combining an if statement with our last topic for today, break. This statement looks like

if increment < tolerance:
break

within a loop. This will break out of the loop (not the if statement). Let’s see how we could add this to
the loop above:

tolerance = le-5
total = 0
i=20
while np.abs(total - np.pi**2/6) > tolerance:
i=1i+1
increment = 1/i%%2
total = total + increment
if np.abs(increment) < tolerance:
break

Let’s unpack this, since it is the longest block of code we have yet seen in this class. The while statement
works exactly the same as earlier, but there is another check within the loop. The loop will end when the
total is within tolerance of the answer (as before), or when increment is smaller than tolerance. Let’s
see which one actually triggered the break, and what we got, using

print(i, increment, np.abs(total - np.pi**2/6)
We see this time that we broke at i = 317, much sooner than before. Our error on the total was about 3e-3.

In practice, here’s a suggestion for how to write your loops using break statements. We’'ll also use the for
loop rather than the while loop. The following structure should be versatile enough to serve you in most
applications. T’ll first set the mazimum number of steps or iterations that I will allow. I'll use 1000 for now:

max_iter = 1000
Now I can write this as a for loop, and use a break statement inside:

total = 0

tolerance = le-5

max_iter = 1000

for i in range(1l, max_iter):
increment = 1/i%%2
total = total + increment
if np.abs(increment) < tolerance:

break

We will use this basic construction later in this class to implement a Newton-Raphson solver to solve equa-
tions, and to perform numerical integrals. It should be sufficient to do most of the tasks you will need in
undergraduate physics that require loops.

Let’s have a bit more practice on this, again with a series (we’ll apply it to other applications later in the
class). Let’s approximate the natural logarithm of 1.5 using the series

1n(1+x):i(—1)"+1%:x———kf———k... (3)

How would you approximate this series using a for loop, breaking when the increment is less than 10757
Go ahead and write it yourself, using the template above for the other series that evaluates to 72/6.

The first part will be the same. In fact, the only difference will be the increment:

x = 0.5 # we will approximate 1n(l + x) = 1n(1.5)
total = 0
tolerance = le-5
max_iter = 1000
for i in range(1l, max_iter):

increment = (—1)**(i + 1)*x**i/i

total = total + increment

if np.abs(increment) < tolerance:

break

If we print i at the end of the loop, we find that we broke after 13 iterations, and that our answer is within
In 1.5 within about 3 x 1076.

I'll introduce one more small tweak. If the answer is very large, say 108, it probably doesn’t make sense to
use a tolerance of 10~7. But a fractional tolerance of 10=7 (or a tolerance of 10) may make sense. We
might say that

ftol = 1le-7
which we could use as

if np.abs(increment) <= ftol*np.abs(total):
break

This approach is very common, and ftol is the most common variable name for this tolerance. I moved
total to the right-hand-side in case it is zero, so that I am not dividing by zero. The approach can still fail.
If the correct answer is very close zero, then as my guess gets better, my requirement to break the loop con-
tinues to get stricter and stricter, and I might never break. Using a fractional tolerance isn’t foolproof, and
works poorly if the answer is too close to zero. But then again almost nothing in numerics is foolproof. You
can only do your best, write your code to maximize clarity and minimize mistakes, and learn what to look for.

To recap what we discussed this class, we introduced loops to compute something by successively better
approximations until we are doing well enough. This basic approach describes numerical integration, solving
equations, and lots of other applications that you can’t just solve analytically. We introduced for and while
loops, and then the break statement. If there is one template to burn into your memory, that will apply to
as many physics situations as possible, I suggest the following:

for i in range(max_iter):
do_something
if condition:
break

The do_something step could be to approximate an integral, to add a term to a series, to take a successive
approximation to an equation, etc.

An Aside: Recursion

T’ll spend the last few minutes talking about recursive functions. You may have seen recursion relations in
math. For example:

1 n=1
f(n){?)f(n—l)—i-l n>1 @

We can achieve something similar in a function by calling itself. Let’s implement the example above. We’ll
need to use an if statement to see if we are at n = 0:

def recursive_3npl(n):
if n ==
return 1

Now if we are not at n = 1, we implement the recursion relation by calling the function at n - 1:

def recursive_3npl(n):
if n ==
return 1
else:
return 3*recursive 3npl(n - 1) + 1

This will insert the function into itself many times. You do need to be a little careful though. What if you
call recursive_3npl with an argument of 0.57 It will become an infinite loop. You can implement checks
at the beginning of your code to guard against that, but that sort of defensive programming is beyond the
scope of this class.

There’s one particular example of a recursion relation that will be useful in the homework, and that is for
the derivative. The n-th derivative may be defined recursively as

fle+h) = fz)

£'(e) = lim L2 (5)
(=1 (3 4 1) — =D (g

So, you could approximate the n-th derivative by writing a function for

(n) f($+h’1—f($) n=1
/ (‘T) = f(ﬂ*l)@_’_h})l_f(n*l)(w) n>1 (7)

for a function f, a value z, and some small h.

Introduction to Computer Programming for the Physical Sciences
Timothy Brandt

Chapter 4
Numpy, Arrays, and Indexing

Thus far, you have used numpy only for a couple of functions, like sine and the exponential. Here, we will
introduce the module as a more powerful tool for a lot of what you will do in physics computing.

The core of numpy’s usefulness is because it can do things with arrays, not just numbers. An array is a new
thing that we haven’t used yet. It’s like a matrix, with many elements, and indeed can function within numpy
exactly as a matrix. A lot of numerical computing is actually linear algebra, so there is a huge amount of

effort put into making linear algebra fast and elegant.

We'll start with an introduction to what an array is. Let’s start with the numpy function linspace. You
can use it with, for example,

x = np.linspace(xl, x2, n)

where x1 and x2 are the smallest and largest elements in the resulting array, and n is the number of elements.
The command

x = np.linspace(0, 1, 10)

will produce an array of ten elements. The first will be zero, the last will be one, and there will be eight
1

elements in between (g, %, etc.). You can show this with the statement
print (x)

The array will be printed enclosed in square brackets [1. I want to give you one other way of making an
array here:

x = np.arange(10)

This will make an array of integers from 0 up to 9 (it’s similar to range, but it makes an array rather than
an iterator-don’t worry too much about the difference). Once you have a numpy array, you can operate on
every element in that array. For example,

y = xX*k*%2

This will square every element of the array x and save the result as an array called y.

All of the binary operations you have used so far, +, -, *, /, and **, will operate element-wise. Earlier, you
wrote a function to square a number,

def sqr(x):
return x**2

This will work just as well on an array. If you have this function definition, you can try the following:

print(sqr(5))

x = np.linspace(0, 3, 4)
print (sqr(x))

You can write a polynomial or an exponential function on an array just as well. For example, the line

y = x**%3 + bxxxx2 - 7

could have x as an array or a number, and operate in the same way.

The above examples multiplied an array by a number. We can also multiply two arrays together, for example
Z = X*y

This will multiply the two arrays x and y element by element. If x and y have different sizes (called shapes
in numpy), we will get an error message:

x = np.arange(5)
y = np.arange(6)
Z = X*y

will produce an error that the arrays have incompatible shapes.

The next topic is how you can get an individual part of an array. This general topic is called indexing. You
can get the individual element i in an array using

x[i]

So, for example, you can set

x = np.arange(5)

An array is indexed from zero. So, you can get the first element of x by x[0]. Try it:
print (x[0])

There are a few fancy things you can do with indexing of numpy arrays. We’ll explore a few of them in the
homework and section, but we will introduce them here:

e The first element in an array x is x[0]

e The second element in x is x[1]

e The last element in x can be written as x[n - 1] (if x has n elements)

e The last element in x can also be written as x[-1]

e The second-to-last element in x can be written as x[-2]

e A subarray of elements, e.g., 1 through 5 (the second through sixth elements) is x[1:6].

e Every other element in x (starting with the first one) can be written as x[0::2] or x[::2].
e Similarly, every third element would be x[::3].

e The array in reverse order would be x[::-1].

Let’s practice this a little bit, starting with
x = np.arange(5) + 2
Print the first element of this array, the last element, every other element, and the elements in reverse order.

One other thing to know about arrays: you can select elements from an array using a condition. For example,
using

x = np.arange(5) + 2

there are five elements, the first element is 2, and the last element is 6. You can select all elements that are
greater than 5 with

x[x > 5]
What actually happens is that x > 5 it itself an array, but an array of True and False:

x = np.arange(5) + 2
print (x)
print(x > 5)

will return

[2 345 6]
[False False False False Truel

The conditional will operate element-by-element, returning a boolean array (i.e. an array of True and False).
Using this array as an index will extract only those elements where the boolean array is True. In this case,
it will extract only the elements that are greater than 5, i.e., only the last element. We will end up with the
single-element array [6].

This has been a lot of indexing, so let’s practice a little bit more. We’ll start with an array of x values and
y = np.exp(x):

x = np.linspace(-5, 5, 100)
y = np.exp(x)

1. What is the first element of y?
2. What is the last element of y?
3. Set z equal to the elements of y that are greater than 2.

4. What is the first element of the array z that you defined above? Is it the smallest element of z?

One more set of functions that are handy if you want the largest or smallest element of an array, you can
use min Or max.

Now let’s look at an example of this with the Planck function you have seen before in this course:

2hy? 1
B(n,T) = = —— (1)
exp (kBT) —1

The Planck function defines the photon energy radiated as a function of the photon’s frequency v for an
absorbing (“black”) body at temperature T. To derive it, you need to know quantum mechanics (indeed, it
played an important role in the development of quantum mechanics). You should have written this function
before, but for practice, we’ll do it again:

def Bnu(T, nu):
c = 2.998e8
kB = 1.381e-23
h = 6.646e-34
return 2xh*nu**3/c**2/ (np.exp (h*nu/ (kB+T)) - 1)

In the past, we have used this as a function of two numbers v and T. Now, we can consider it to be a
function of arrays and/or numbers. For example, you can feed Bnu with a number for T and an array for
nu, or a number for nu and an array for T. You could also give it arrays for both nu and T, but in that case,
you would need them to have compatible shapes. Much more commonly, you would use this function with
a number for one input and an array for the other.

Let’s make a concrete example using the function Bnu defined above. Let’s say we want the Planck function
for a 500 K emitter at many frequencies. We can call Bnu with the single number 500 for T, but an array for
nu. Let’s first try nu going from 0 to 1000 Hz (we’ll use 100 steps), and see what we get for Bnu:

nu = np.linspace(0, 1000, 100)

T = 500

Intensity = Bnu(T, nu)

Now we can print the first element of both nu and the first element of Intensity:

print(nu[0], Intensity[O])

and we get zero for both (you can check the equation for why). We can also print the last element:
print(nul[-1], Intensity[-1])

Now, what if we want to check whether the maximum intensity was somewhere in the range between 0 and
1000 Hz? How might I do that? Well, if the maximum intensity is at the endpoint, then it probably isn’t in
the middle, so I can check that:

print (max(Intensity))

and it turns out that I indeed get the intensity at the endpoint. The frequency of the peak intensity is from
another formula, which you could derive by differentiating Equation (1) and setting the derivative equal to
zero. But for now, let’s try a different frequency range, from 0 to 10 Hz, and try again (I'll use 1000 steps
this time):

nu = np.linspace(0, lel4, 1000)

T = 500

Intensity = Bnu(T, nu)

Now if I try

print(nul[-1], Intensity[-1])
print (max(Intensity))

I find that the maximum intensity is not at the endpoint; it must be somewhere in the middle.

For the next topic, let’s look at how we could figure out which frequency in our list had the highest intensity.
There are several ways of doing this. Take a few minutes to think of one possible way, and sketch out the
code (you don’t need to actually get it working; we’re after the ideas for now).

Ok, a few ways. First, we can step through each intensity and see if that one is the max:

maxI = max(Intensity)
for i in range(len(nu)):

if Intensity[i] == maxI:
maxnu = nul[i]
break

T used len(nu) to get the length of nu, the number of elements it has.

We can also step through intensity and see if that intensity is more than our current max (basically the same
as above, but instead of using break, we :

maxI = Intensity[0]
for i in range(len(nu)):
if Intensity[i] > maxI
maxnu = nuli]
maxI = Intensity[i]

Finally, we can do this in one line:

maxnu = nul[Intensity == max(Intensity)]
In the line above,

Intensity == max(Intensity)

is an array that is True where Intensity is at its maximum, and False otherwise. Calling Intensity with
this array of indices pulls out only those element(s) of nu where Intensity is maximized. In the section and
the homework, we’ll have a bit more practice on arrays and indexing.

Finally, I wanted to say a little bit about how a function sometimes doesn’t work as straightforwardly with an
array. Let’s revisit the absolute value function, which we introduced in the last class with an if statement.
One way of writing the absolute value would be

def my_abs(x):
if x < 0:
return -Xx:
else:
return x:

Earlier, I said that we could reuse a function like the Planck function, calling it with an array. We cannot
use my_abs in that way. If we try to call my_abs with an array, we get an error. x < 0 will be an array of
True and False—which element of that array should control the if? Since if statements do not play nicely
with arrays, we need an alternative. You have a few options:

We can assume that the input is an array, and write the absolute value function like

def my_abs_array(x):
val = xx*1
val[x < 0] *= -1
return val

This, however, will only work if x is an array. If you look closely, you’ll notice that I had an extra line in
the beginning, val = x*1, not val = x. The difference is subtle. When I write val = x*1, val is a new
array that has the same values as x. However, if I write val = x, val points to the same array as x, and
modifying val will also modify x. They are two different variables pointing to the same thing, rather than
two different variables pointing to two different arrays (that happen to have the same values, initially).

If I call my_abs_array with just a value, e.g. my_abs_array(-5), I will get an error. Making a function like
this work with both floating point numbers and arrays is hard.

An alternative would be to use the earlier function my_abs within a loop:
y = x*x0

for i in range(len(x)):
y[i] = my_abs(x[i]l)

Introduction to Computer Programming for the Physical Sciences
Timothy Brandt

Chapter 5
Plotting, File Input and Output

In this chapter, we will get some practice using Python to make plots, read in data, and write out data. The
reading, writing and saving will be a bit easier if you are using Anaconda on your own computer rather than
Google Colab. It’s possible either way, and I encourage you to work through the quirks of your configuration
and operating system.

Let’s start with plotting. We will use matplotlib throughout this, with the line
import matplotlib.pyplot as plt

This will give us enough flexibility to do a whole lot of plotting with just a few lines. For an initial example,
let’s plot

y =sinz
Plotting on the computer means making dots at the locations of points, connecting points, etc. A graphing
calculator does the same thing, but it usually chooses the points for you automatically. We’ll need to be a lit-

tle bit more explicit for Python (and for most other languages). For example, let’s see what happens if we set

x = np.arange(10)
y = np.sin(x)

This sets x =0,1,2,...,9 and y =sin0,sin1,sin2,...,sin9. Let’s see what this looks like with

plt.plot(x, y)

1.00 A

0.75 A

0.50 A

0.00 ~

—0.25 A

—0.50 A

—0.75 A

—1.00 A

The plot doesn’t look great. There are a few problems:

1. The curve is sampled coarsely, so it looks jagged.
2. The numbers on the axes are a bit small and hard to read.

3. The axes are unlabeled.

The second point, the one about the font sizes, can be fixed with a line at the beginning of the program
where you can set your default parameters for plotting. For my tastes, most of the choices matplotlib
makes are good, but there are some that I don’t like. The biggest ones are the line width and font size. I
usually put the following lines at the start of my program:

from matplotlib import rc
rc('font',**{'size': 16})
rc('lines', **{'linewidth':3.0})
rc('axes', **{'labelsize':16})

I also prefer my ticks on the inside of the plot, along with minor ticks. You can change this behavior with

rc('xtick', **{’direction’ :'in', 'top':True, 'minor.visible' :True})
rc('ytick', **{'direction':'in', 'right':True, 'minor.visible':True})

If you want, you can also turn on grid lines with
plt.grid()

We can see what difference this makes (grid lines on the right):

1.0f” ‘ ‘ ‘ R 1.0
0.5] 0.5}
0.0}] 0.0}
-0.5}] -0.5}
-1.0k. . . . — -1.0k. : ; : .
0 2 4 6 8 0 2 4 6 8

For the plots above, the rc parameter tweaks came at the beginning of the notebook, while I drew the plots
with nothing but

plt.plot(x, y)
for the plot on the left, or

plt.plot(x, y)
plt.grid()

for the plot on the right.

You can also put these lines into a matplotlib style file. You can add to this file as you like, in a plain
text editor. To make the plot use the settings in this file without all of the rc lines, simply use something like

plt.style.use('mystylefile.mplstyle')
plt.plot(x, y)

where the file mystylefile.mplstyle is a plain text file (you can give it any name you like, but I suggest
keeping the file extension mplstyle). I often use one that simply looks like

font.size : 16
lines.linewidth : 3.0
savefig.facecolor : white
axes.labelsize : 16
xtick.direction : in
xtick.top : True
xtick.minor.visible : True
ytick.direction : in
ytick.right : True
ytick.minor.visible : True

Now we’ll look at the other problems with the plots. First, there aren’t enough points (we only plotted
ten points). We can use more points using np.linspace; that will make the curve look a lot smoother.
Also, if we want to plot just a few points (or if we indeed have only a few points, for example if they are
measurements), we can plot points without connecting them.

Let’s start with making the lines smooth. For this, we will want to define x differently, for example, with
1000 points:

x = np.linspace(0, 10, 1000)
np.sin(x)
plt.plot(x, y)

<
]

1.01 1

0.5

0.0

-0.5

-1.0t]

This looks nice. We still have to label our axes. We can do this with

plt.xlabel("x")
plt.ylabel("y = sin x")

Unfortunately, this ends up cutting off the axis label when I save the figure for these notes, so I do need one
more line to make it size the figure appropriately:

plt.tight_layout ()

We finally get the following plot:

1.0f" ' ' ' ']
0.5} |
X
[
@ 0.0} :
Il
>
—0.5} -
~1.0} , -
0 2 4 6 8 10
X

Again, apart from the settings I use at the beginning, the commands to make this plot were

x = np.linspace(0, 10, 1000)
y = np.sin(x)

plt.plot(x, y)
plt.xlabel('x')
plt.ylabel('y = sin(x)"')
plt.tight_layout ()

So it isn’t too bad. And if you have a style file like the one included on the course page, all you need is one
more line at the beginning:

plt.style.use('mystylefile.mplstyle')

If you want to save your figure, just add a single line at the end:

plt.savefig('name.pdf')

or

plt.savefig('name.png')

depending on whether you want png or pdf format (you would replace name with the file name you want
to use). I do not suggest jpg for plots with lines and/or text: jpg is designed for photos and does not keep
clean edges on figures. If you are using Google Colab, you’ll probably need to mount your Google drive and
save your figures there: it is a little bit more complicated than if you are using Anaconda Python installed

on your computer.

Now, let’s see how we can plot with points rather than lines. For this, we’ll return to our sine curve with
just ten points:

x = np.arange(10)
y = np.sin(x)

We certainly do not want to connect these with lines. To do better, we’ll need to introduce two more
arguments that you can give to plt.plot(): marker and linestyle. If we want to draw points instead of
lines, we need two commands:

1. Draw points with marker="'o" (or some other symbol; you can look at your choices, and you can choose
the point size with markersize),

2. Do not draw lines with 1inestyle="' "

We’ll see what that plot looks like:

plt.plot(x, y, marker='o', linestyle=' ')
plt.xlabel('x"')
plt.ylabel('y = sin(x)"')

1.0f” ' | | T
° []
[]

. 0.5¢ .
X
z R
‘» 0.0p e 1
' :

—-0.5¢ 1

[
—1.0k. . N R .]
0 2 4 6 8
X

For the final part of today’s exploration of plotting, we can also mix points and lines, and we will introduce
labels and legends. The label will be one more keyword to plt.plot (), to be used if you call plt.legend ()
later. Just remember that matplotlib will draw lines in the order in which you give it the commands. So,
each new curve will be on top of the old curves. I'll first plot sinz using a lot of points, and then plot ten
points on top. When I call plot, matplotlib will add new things to the same figure (the same axes in
matplotlib lingo) unless you explicitly clear the figure. I'll also add in a grid so you can see how that looks.
T’ll show the plot and code on a new page, along with a sort of plotting cheat sheet.

Handy Plotting One Page “Cheat Sheet”

Sample Code:

x = np.linspace(0, 10, 1000)

y = np.sin(x)

plt.plot(x, y, label='sin(x)')
x_pts = np.arange(10)

y_pts = np.sin(x_pts)
plt.plot(x_pts, y_pts, label='Points', linestyle=' ', marker='o')
plt.xlabel('x"')

plt.ylabel('y = sin(x)"')
plt.grid()

plt.legend()

1.01

0.5¢
x
C
w 0.0
Il
>
i pa— sin(x) /
Points
—-1.0¢ i
0 10
X

Itemized Guidelines

e Youll want to include something like the following at the start of your program (these reflect my own
preferences), or import a style file.

import matplotlib.pyplot as plt
from matplotlib import rc
rc('font',**{'size':16})
rc('lines', **{'linewidth':3.0})
rc('savefig', **{'facecolor':'white'})
rc('axes', **{'labelsize':16})
rc('xtick', **{'direction':'in', 'top':True, 'minor.visible':True})
rc('ytick', **{'direction':'in', 'right':True, 'minor.visible':True})
or, in place of the rc lines,
plt.style.use('mystylefile.mplstyle')
e Your workhorse will then be plt.plot () (but see also plt.semilogx (), plt.semilogy(), and plt.loglog()).

e You must give points x and y to plt.plot(). You may also give it lots of other, optional arguments,
and you can explore those on your own. A couple of the most important are label, linestyle, and
marker. Other very common ones are color, markersize, and linewidth. To plot only points without
lines, use linewidth=' ' and give some other kind of argument to marker (you can check the options
using Google).

e You can turn on faint gridlines with plt.grid().

e You can label your z and y axes with plt.xlabel('xname') and plt.ylabel('yname'). If you
don’t like the default axis limits, you can also manually set them with plt.xlim(xmin, xmax) and
plt.ylim(ymin, ymax) (putting in numbers for all arguments).

e You can save your figure with plt.savefig('filename'); I strongly recommend either png or pdf
format. You might also find that you need to include plt.tight_layout() to make sure that you
don’t cut off axis labels.

Now that we can plot, we might want to plot data rather than just mathematical functions (even those that
we use all of the time in physics). This discussion will assume that you have Anaconda python installed on
your system. If you are using Google Colab, you will have a bit of a challenge in dealing with file input and
output. I'll first show you how to load in data, and then how to save data.

The main function I suggest for reading in data is np.genfromtxt(). You need to give the function a
filename, and this file needs to be in a place where Python knows where to find it. This might be one of
the trickier parts, since giving paths to files can vary quite a bit depending on your operating system. As a
suggestion, the directory that Python saves your notebooks into will be the easiest directory

from which to load in data files.

Once you can give Python the path to your file, you can give that filename to np.genfromtxt(). It will
look something like

np.genfromtxt('myfile.txt')

The most important parameters for you to know about are delimiter and skip_header. The delimiter
value tells Python how values are separated. For example, if you are reading in a .csv file, you will want to
use delimiter="',' (note the quotes!). A plain text file might have a space as the delimiter, which is what
numpy will assume if you don’t tell it otherwise. The skip_header value tells Python how many lines to skip
at the beginning of your file.

When you load in a text file using np.genfromtxt, it will show up as a numpy array. For example,

mydata = np.genfromtxt('myfile.txt')

will load up my data from the file 'myfile.txt"' into the array mydata. This array will have two dimensions:
if you want the first column, for example, it would be

firstcol = mydatal:, 0]

The colon in the first index position means to take data from all of the rows; the zero in the second index
position means to take only the first element of each row. If I wanted to take the first row of data, I would use

firstrow = mydatal[0]

Saving your data to a file looks basically the same as loading it in; just use something like
np.savetxt('myfile.txt', mydata)

where mydata is the array of your data. We’ll explore more about how to write data later. For now, hopefully

this will help you to load in data that you are given, that you write yourself in a text editor, or that you
write in a spreadsheet editor like Excel or Google Sheets.

Introduction to Computer Programming for the Physical Sciences
Timothy Brandt

Lists and Arrays: What’s the Difference?

In this class we haven’t really used Python lists. We have used Python arrays. They look similar,
but they are quite different under the hood. Take the following example:

x = [0, 1, 2, 3, 4]
print (x)

prints
(o, 1, 2, 3, 4]

And
x = np.arange(5)
print (x)

prints
[0 12 3 4]

It almost looks the same—there just aren’t commas. But these two things are very different. A list
is a collection of any set of things. For example,

x = [0, 'hello', np.sin]

is a list containing the number 0, the string hello, and the function np.sin. Lists can mix and
match anything. You can add to them, remove from them, etc. (we haven’t covered any of that).
This flexibility comes at a price. Suppose that I want to square each element of a list. There is no
guarantee that this is even allowed. One the elements of the list is np.sin, which I am not allowed
to square. Also, if I add to the list, the computer will have to look for space in its memory to place
the extra element. Lists are very complicated to manage under the hood.

Arrays look similar but have important differences from lists. They must follow much stricter rules.
For example, when you make an array, you need to specify how big that array is, and every element
of the array should have the same type (a floating point number, for example). This guarantees
that, for example, squaring each element or taking the sine of each element is allowed. Arrays also
live in blocks of memory, where each element is stored next to the previous element. This makes
it much, much faster to operate on an array, because the computer can be very efficient under the
hood thanks to the restrictions that arrays must follow.

To give an example, I'll make x as both a list and an array:

x = np.linspace(-5, 5, 1000000)
xlist = list(x)

Now, I will compute the sine of each element of x, first using np.sin on the array, and then by
doing it separately on each element of the list (don’t worry about understanding the syntax of the
second way). I'll use %timeit to measure how long it takes each way:

%timeit y = np.sin(x)

6.89 ms £ 383 ps per loop

%timeit y = [np.sin(val) for val in xlist]

924 ms + 11.6 ms per loop

The method with arrays was almost 150 times faster. In numerical work, you usually want to use

arrays rather than lists, both because they behave nicely with functions and mathematical opera-
tions, and because they are usually much faster.

Introduction to Computer Programming for the Physical Sciences
Timothy Brandt

Common Bugs and Error Messages

I'll try to summarize a few common bugs and errors here, with error messages and typical causes.
I won’t be able to cover everything, but if you are stuck, please check!

Common Bugs That Do Not Produce an Error Message

Grouping and order of operations (e.g. b/2*a rather than b/ (2+a))

Defining a variable more than once. If you write x = 5 and later write x = np.arange(5), the
earlier definition of x will be forgotten. If you use the same name for more than one variable you

can run into trouble, for example, if you use h for Planck’s constant and for a small interval.

Good practice to avoid bugs: variables that you use in a function should almost always be either
passed as arguments or defined within the function. For example,

def f(t, omega, phi):
return np.sin(omega*t + phi)

is much better than

def f(t):
return np.sin(omega*t + phi)

In the lower case, it is easy to forget that omega and phi will be used by the function, and that
their values could change. If you change omega then f (t) changes, but the call to £ hides this fact.
You want, for example, £ (1) to give the same result in one part of your code as in another.

Common Warnings

Divide by zero (like it sounds). A positive number divided by zero will give inf, a negative num-
ber divided by zero will give —inf, and zero divided by zero will give nan (not a number). Example:

np.linspace(-5, 5, 11)
np.sin(x)/x

X
y

Overflow or underflow. This happens when a function or operation gives a number too big or
too close to zero to represent in floating point. For example, np.exp(1000) will give inf with an
overflow warning, and np.exp(-1000) will give zero (perhaps with, perhaps without an underflow
warning). Example:

I}
I

np.arange (1000)
np.exp(x)

<
I

Common Errors

NameError This usually means that you forgot to define or import something. If your kernel crashed
or restarted, you might have to re-run the cell(s) where you defined functions, variables, and/or
imported modules.

SyntaxError This means that your code cannot be interpreted and run at all. Look for things like
missing parentheses making it so that a line of code doesn’t actually end. Example:

def f(x):
return np.sin(5*(x + 2)
y = £(3)

IndexError This means that you tried to do something with an element of an array that doesn’t
exist or isn’t allowed. For example, you tried to access the tenth element of an array with only five
elements:

X

y

np.arange (5)
x[10]

TypeError: unsupported operand type(s) You probably tried to combine two incompatible
kinds of things. For example, 5*np.sin will produce this error, because aren’t allowed to multiply
a number and a function. Another example:

y = np.exp + 1

ValueError: The truth value of an array with more than one element is ambiguous. This
tends to happen when you combine if with an array. For example:

X = np.arange(5)
if x < 3:
print("x is less than 3")

x < 3isactually an array, with five values (some True and some False). The if statement doesn’t
know which of these value(s) to use. For this reason, you cannot call an if statement with an array.

Introduction to Computer Programming for the Physical Sciences
Timothy Brandt

A Few Notes on Latex

Latex (or ITEX) is a program to format books and articles. It is especially good at rendering
math formulae. Most physics research papers are written in Latex, as are these notes. These notes
will not teach you Latex. However, because you can use Latex in markdown cells within Jupyter
notebooks, this is a good place to start to learn how to write pretty math formulae. This sheet
will give you only the briefest introduction to how to write Latex in a markdown cell. It will also
introduce you to a tool to translate Python code into Latex formulae; this may make it easier for
you to spot bugs. For this entire sheet, I will assume that you are working in a Jupyter
notebook. You can use Latex to write articles, and even make Power Point-style presentations,
but those are topics for another day, and another setting.

Within a markdown cell, you can write a Latex formula by putting text within two $ signs. For
example,

$x + 1%

will show up as

z+ 1.

Latex lets you use parentheses, exponentiation, sums, integrals, limits, etc., etc. (basically any
math formula you see in any textbook). You'll probably find yourself getting familiar with these
over time as you use them. One useful site, if you want to know how to write a symbol in Latex
and don’t know how, is https://detexify.kirelabs.org/classify.html

One very useful thing is to be able to translate a line of Python code into Latex. This can make
it easier to spot mistakes, for example with order of operations, and to check whether your line of
code does what you intend. For example, suppose we want to write

z=e""+z(y? + 3x)

In Python, we would write

import numpy as np
z = np.exp(-x) + x*(y**2 + 3%x)

We can translate this line into Latex using a module called sympy (included in both Anaconda
Python and Google Colab):

from sympy import latex, sympify
print (latex(sympify('exp(-x) + xx(y**2 + 3xx)')))

There are a couple of things that I needed to change. I first changed np.exp to exp, and

you would need to do similar things with, for example, np.sin and np.cos. Other than that, this
approach will work with expressions, but it doesn’t like the z = part. So, I just put the line of
code after = into quotes, change np.exp to exp, and ask sympy to translate. I get

x \left(3 x + y~{2}\right) + e {- x}

If T write, in a markdown cell,

$ x \left(3 x + y~{2}\right) + e {- x} $

I get

r(3x +y?) +e*

You can try this yourself: just copy and paste your math expressions from Python as

from sympy import latex, sympify
print (latex(sympify('math_expression')))

(replacing math_expression with your actual expression) and see what you get. It will hopefully
help you learn Latex and catch bugs, all at the same time.

I'll include one more example here. The quadratic formula is

_ —bE Vb —dac
N 2a '
If I want to write that in Python, for the positive root, I would write

xT

x_plus = (-b + np.sqrt(b**2 - 4xaxc))/(2*a)

T’ll translate this via sympy. Please remember:
1. Put the expression in quotes (single quotes ' and double quotes " will both work)
2. Replace np.sqrt with sqrt
3. Include only the right-hand side

from sympy import latex, sympify
print (latex (sympify (' (-b + sqrt(b**2 - 4*a*xc))/(2xa)')))

This gives
\frac{- b + \sqrt{- 4 a ¢ + b~ {2}}}{2 a}
Putting this between $ in a markdown cell:

$ \frac{- b + \sqrt{- 4 a ¢ + b~ {2}}}{2 a} $

gives
—b+\/54aW
a
which is what we want. What if we forgot some parentheses? For example, what if we wrote
x_plus = -b + np.sqrt(bx*2 - 4xa*xc)/2*a
I can translate this into Latex using

from sympy import latex, sympify
print (latex(sympify('-b + sqrt(b*x2 - 4xaxc)/2*a')))

and get

\frac{a \sqrt{- 4 a c + b {2}}}{2} - b

Putting this between $ signs in a markdown cell, I would have
$ \frac{a \sqrt{- 4 a ¢ + b~ {2}}}{2} - b $

which renders as

av—4dact+b? b
2

Whoops! This makes it a lot easier to see my mistakes.

