Preparing for Transiting Exoplanet Atmosphere Studies
with the Nancy Grace Roman Space Telescope
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Roman is projected to detect ~100,000 transiting exoplanets...
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could still be tweaked pre-launch to maximise atmosphere science!
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1. Compared to other missions, Roman’s power for exoplanet characterisation will be in 3 hour

large sample statistics that can help reveal population-level trends
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Stay tuned for...constraints on orbital eccentricities
...the problem of false positive eclipsing binaries Higher photometric filter noise in F213 results in no chromatic transit detections for
...phase curve simulations! F146-F213 case — chromatic transits are only detectable with FO87
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