Preparing for Transiting Exoplanet Atmosphere Studies with the Nancy Grace Roman Space Telescope

Yiwei Chai¹, Néstor Espinoza^{2,1}, Robby Wilson ³ and the Transits in the Roman galactic EXoplanet Survey (TRExS) Team

¹Johns Hopkins University, Baltimore, MD, USA, ²Space Telescope Science Institute, Baltimore, MD, USA ³Goddard Space Flight Center, Greenbelt, MD, USA

Roman is projected to detect ~100,000 transiting exoplanets...

What can this wealth of multi-band primary transits, secondary eclipses, and phase curves teach us about...

- Trends in broad atmospheric composition and cloudiness?
- Trends in **planet dayside fluxes** and 2. orbital eccentricities?
- Atmospheric circulation and cloud distributions?

...with the Galactic Bulge Time-Domain Survey

Why do we care about secondary filters?

Simulated hot-Jupiter transmission spectrum no clouds Continuum 0.0130 0.0124 Wavelength [um]

Different filters trace different features of the spectrum

This enables us to do transmission + emission 'spectrophotometry'

Secondary filter observing cadence particularly affects our ability to constrain multi-band transits

Choice of secondary filter/s + cadence

could still be tweaked pre-launch to maximise atmosphere science!

Building an end-to-end simulation to explore atmosphere science yields

How many secondary eclipses could *Roman* detect?

For 10,000 planets in 1 GBTDS field (assuming cloudy, solar atmospheric composition), we repeat our end-to-end simulations over each possible secondary filter + secondary filter cadence combination

scenario

Extrapolating over 6

secondary eclipse

at a ~90% recovery

rate from best-case

total fields gives

detections

Example fit F146 1.01 -1.00 **Planet** parameters: $T_{eq} = 554 \text{ K}$ $R_{p} = 0.9 \, R_{J}$ $M_D = 3.7 \, \mathrm{M}_J$ injected noisy data recovered F087 1.01 Set up: 12-hour cadence over 1 70-day 0.99 season with F087 secondary filter 0.98 0.98 injected noisy data recovered 0.97 0.0 0.2 0.4 -0.4 -0.2 phase time [d] — med post — med post Rp/Rs Fp/Fs 1 sig post 1 sig post Transit + eclipse 1 sig analyti --- med post --- med post depth posteriors 1 sig post 1 sig post show good 1 sig analytic 1 sig analytic agreement with input values -0.002

Summary

- 1. Compared to other missions, *Roman's* power for exoplanet characterisation will be in large sample statistics that can help reveal population-level trends
- 2. Optimal GBTDS design to maximise atmosphere science yield is with an F087 secondary filter at a shorter cadence (e.g. 3 hours)
- 3. Simulations of GBTDS data with photometric filter noise recover ~80-90% of best-case analytical yield estimates: 100s of chromatic transits & ~900+ eclipses!

Stay tuned for...constraints on orbital eccentricities

- ...the problem of false positive eclipsing binaries
- ...phase curve simulations!

How many chromatic transits could Roman detect?

For chromatic transit yields, choice of secondary filter + cadence does matter!

Analytical estimates F087-F146 F146-F213				Simulation yields F087-F146 F146-F213		
3 hour	90	0	3 hour	79	0	
6 hour	49	0	6 hour	41	0	
12 hour	23	0	12 hour	18	0	

Extrapolating over 6 total GBTDS fields gives

~100-500

chromatic transit detections

at a ~80% recovery rate from best-case scenario

Higher photometric filter noise in F213 results in no chromatic transit detections for F146-F213 case — chromatic transits are only detectable with F087

References

Buchner 2016, S&C, 26, 383B Espinoza et al. 2019, MNRAS, 490, 2262 Kreidberg 2015, PASP, 127, 1161 MacDonald & Madhusudhan 2017, MNRAS, 469, 2 MacDonald 2023, JOSS, 8, 4873

Montet 2017, PASP, 129, 947 Speagle 2020, MNRAS, 493, 3132 Wilson et al. 2023, ApJS, 269, 5 Winn 2014, arXiV:1001:2010 Zasowski et al. 2025, ROTAC Final Report and Recommendations

Acknowledgements

This research was conducted as part of the project "Laying the Foundation for a Comprehensive View of Transiting Exoplanets with the Galactic Bulge Survey" (Pls: Quintana, Wilson), supported by NASA under the ROSES-2024 program via grant NNH24ZDA001N-ROMAN.