Use our tool to get occurrences and yields:

meyer2024demographics.streamlit.app

Background

We develop a 6-parameter ($\ln A_p$, $\ln \sigma_p$, $\ln \mu_p$, α , $\ln A_{bd}$, β) parametric model that predicts the frequency and distribution of very low-mass companions, including a gas giants component and a brown dwarf component, as a function of orbital separation and stellar mass.

Fitting Framework

- Bayesian inference using the MultiNest [Feroz+, 2008, 2009, 2019] nested sampling algorithm.
- Model constrained by 51 literature point frequency measurements (RV, microlensing, imaging) (see Fig. B).
- We adopt the best-fit parameter based on the Maximum Likelihood Estimation (MLE) and use the evidence for model selection (Fig. A).

Results

- ullet The Planet Companion Mass Ratio Distribution (CMRD) follows a raising power-law function: $dN/dq \propto q^{-1.29\pm0.08}$, while the brown dwarf CMRD has a positive power-law index: $dN/dq \propto q^{0.29\pm0.09}$.
- ullet The peak orbital separation for planet companions is ${f ln}\,\mu=1.30$ or \sim 3.7 AU. For the brown dwarf component, we fix the separation distribution peaks based on stellar type: \sim 27 AU for M dwarfs [Winters+ 2019], \sim 50 AU for FGK stars [Raghavan+ 2010], and \sim 522 AU for A stars [De Rosa+ 2014], scaled by a factor of 1.35 from [Duquennoy & Mayor 1991].
- The normalization amplitudes are: $\ln A_p = -4.77$ for planets and $\ln A_{bd} = -1.41$ for brown dwarfs.

Applications

• Predicted companion yields for ongoing direct imaging surveys, including: JWST M dwarf survey [Bogat+ 2025], SPHERE/H2 [Sartori+ 2025], JWST Sub-Jupiter Surveys [Carter+ 2023; Biller+ 2023], and METIS/ELT programs [Hinkley+ 2025].

Demographics of Low-Mass Companions From M Dwarfs to A Stars

Fig. A: Posterior distributions. Fig. B: Model vs. observed frequencies.

Findings and Takeaways

- Gas giant planets and brown dwarfs follow different mass ratio distributions.
- Brown dwarfs likely represent the low-mass tail of the binary stellar companion population.
- ullet Orbital separation differ significantly between M dwarfs (\sim 1.65 AU) and A stars (\sim 4.82 AU) with minimal overlap (1.26%) in distributions.
- Our model predicts exoplanet and brown dwarf occurrence rates across stellar types, supporting population studies and survey planning.

