EXOPLANET CANDIDATE DETECTION THROUGH TESS LIGHT CURVE ANALYSIS

Srishti Hazrá

11th Grade at Edison Academy

Magnet School

INTRODUCTION

 Transit photometry is responsible for ~75% of confirmed exoplanets as of October 2023 (NASA Exoplanet Archive).

- Missions like Kepler and TESS produce high-cadence photometric data at massive scale
 - Helps enable detection
 - However, requires overwhelming manual classification methods

CHALLENGES

- Light curves often contaminated by astrophysical false positives (eclipsing binaries, blended background stars)
- Class imbalance and random noise
- Manual vetting is infeasible at scale

Current architecture

- Astronet-Triage-v2, developed in 2023 by Tey et al.
 - CNN trained on Kepler light curves
 - One of the first deep learning models to classify planet candidates
 - Architecture has remained largely unchanged

Tey, Evan, et al. "Identifying Exoplanets with Deep Learning. V. Improved Light Curve Classification for TESS Full Frame Image Observations." ArXiv (Cornell University), 3 Jan. 2023, https://doi.org/10.48550/arxiv.2301.01371.

MACHINE LEARNING

ML for exoplanet detection remains underdeveloped especially in exploiting temporal and spatial features

CNNs for temporal analysis?

- CNNs applied to temporal sequences can significantly outperform classical models, leveraging both spatial and temporal information jointly (Zhang et al., 2022).
- Highly parallelizable and computationally efficient, making them practical for large-scale datasets (like TESS)

Huapeng Li, Yajun Tian, Ce Zhang, Shuqing Zhang, Peter M. Atkinson, Temporal Sequence Object-based CNN (TS-OCNN) for crop classification from fine resolution remote sensing image time-series, The Crop Journal, Volume 10, Issue 5, 2022, Pages 1507-1516, ISSN 2214-5141, https://doi.org/10.1016/j.cj.2022.07.005.

PROPOSED ARCHITECTURE

Model: "sequential"

Layer (type)	Output Shape	Param #
conv1d (Conv1D)	(None, 198, 32)	128
max_pooling1d (MaxPooling1D)	(None, 99, 32)	0
dropout (Dropout)	(None, 99, 32)	0
conv1d_1 (Conv1D)	(None, 97, 64)	6,208
max_pooling1d_1 (MaxPooling1D)	(None, 48, 64)	0
dropout_1 (Dropout)	(None, 48, 64)	0
lstm (LSTM)	(None, 128)	98,816
dense (Dense)	(None, 64)	8,256
dropout_2 (Dropout)	(None, 64)	0
dense_1 (Dense)	(None, 1)	65

Total params: 113,473 (443.25 KB)

Trainable params: 113,473 (443.25 KB)

Non-trainable params: 0 (0.00 B)

PROPOSED ARCHITECTURE

- CNN detects localized spatial transit features (e.g., depth, symmetry)
- LSTM distinguishes periodicity (planetary transits) from irregular patterns (stellar activity)
- MaxPooling, Dense, Dropout to ensure robustness of model
- Architecture captures both what a signal looks like and how it changes

DATA PIPELINE

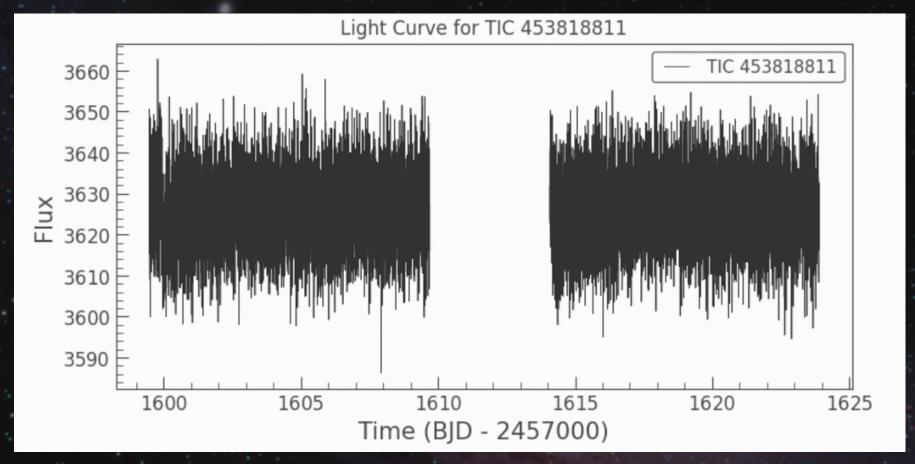
- Obtained light curve data from NASA's Exoplanet Archive
 - Confirmed exoplanets discovered via transits
 - Kepler certified false positive table
- Preprocessing using gaussian process regression & median filtering
- Labeled flux drops ≥10% of segment mean as transit (1), otherwise non-transit (0).
- X: (12,195, 200, 1) > (samples, time steps, features)
- Y: (12.195) > Binary labels

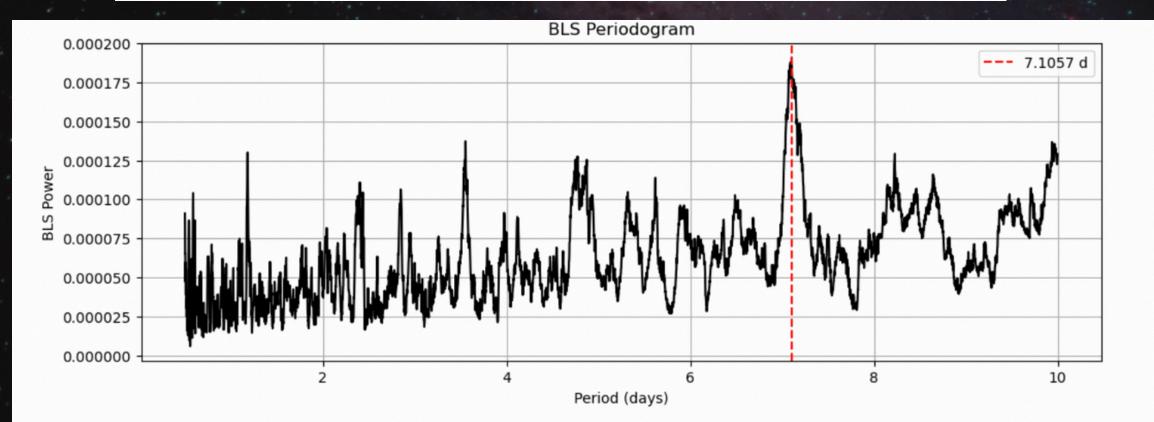
**very imbalanced dataset; focal loss was used to mitigate this as much as possible

DATA PIPELINE

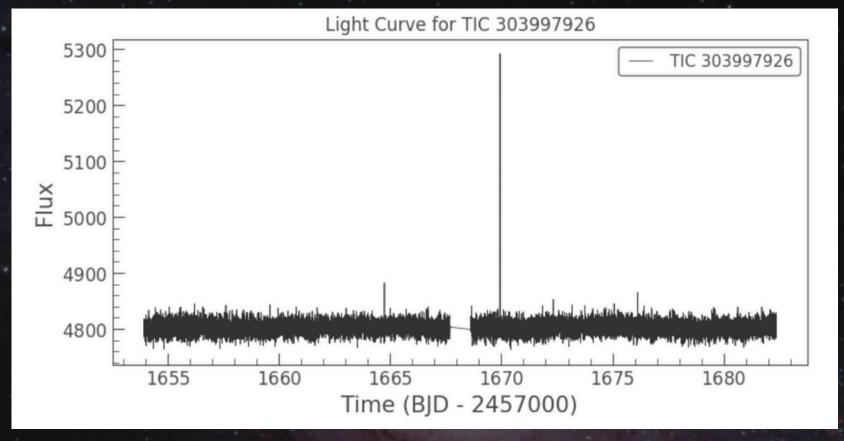
- Model trained on over 38k data points from NASA Exoplanet Archive
 - Adequate loss / accuracy / mAP
- 12195 segmented TESS light curves then evaluated
 - Model's output is a softmax activation function (percentage value)
 - Light curves with an output of >0.9 were flagged for further evaluation
- These were cross referenced with Eclipsing Binary Catalogs (NASA & Gaia DR3). Any V-shaped dips were removed (more indicative of binary stars).

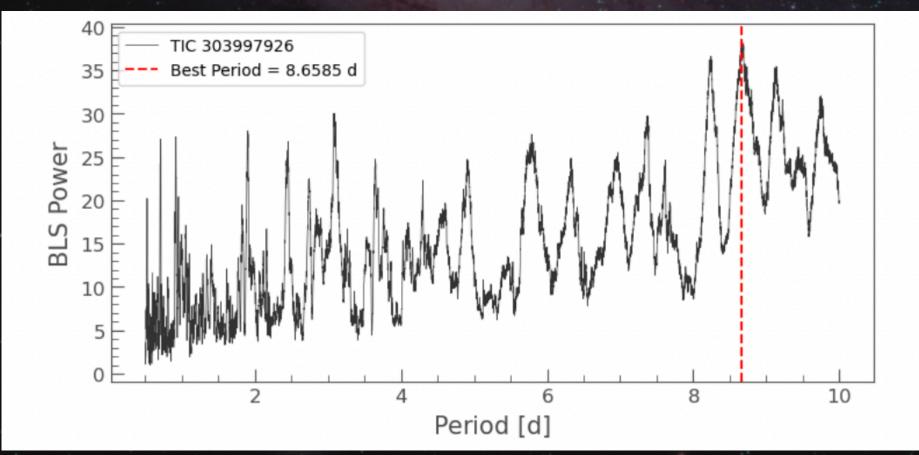
EXAMPLE





EXAMPLE





FINAL RESULT

256 likely candidates of the >12k light curves evaluated 32 flagged as extremely likely candidates

- ~2.1% candidate rate across TESS segments
- All candidates cross-checked with binary catalogs and transit shape metrics
- Suggests improved precision compared to prior pipelines
 - O Area under precision-recall curve ≈ 98% as compared to Astronet-Triagev2's 96.5%
- Further astrophysical vetting ongoing

WHATTHISADDS

- Advances on Astronet-Triage-v2 but incorporates temporal modeling with LSTMs for sequential pattern recognition
- Explicit handling of class imbalance using focal loss
- End-to-end hybrid architecture (CNN + LSTM) tailored specifically for transit photometry

FAILURE MODES

- Missed shallow transits due to normalization issues
- Some flagged false positives passed filters due to noisy periodicity
- May still underperform on low SNR or single-transit events

FUTURE DIRECTIONS

- Explore regularization techniques to reduce overfitting when training
- Experiment with sampling techniques or cost-sensitive learning to improve detection with imbalanced data
- More complex neural architectures (which require more resources to run) might work better for temporal analysis
- Integrate spectroscopic, stellar activity, and high-res imagery multimodal capabilities to improve accuracy

MORE DETAILS + QUESTIONS

iPoster

Please contact me with suggestions/feedback if you have any!

Srishti Hazra

11th grade @ Edison Academy Magnet School
hazra.srishti@gmail.com