

Transit Spectroscopy Using Medium-Band Filters with the **7-Dimensional Telescope**

Jangho Bae¹, Myungshin Im¹, Ji Hoon Kim¹, Hyeonho Choi¹, and Gregory S.H. Paek² ¹Astronomy Program, Department of Physics and Astronomy, SNUARC, Seoul National University ²Institute for Astronomy, University of Hawaii

7-Dimensional Telescope (7DT)

Fig 1. Left: 7DT when it was under construction. Right: 7DT medium-band filters.

- An array of **20 wide-field telescopes** with 50cm apertures (c.f. Kim et al. 2024).
- Equips medium-band filters ($\Delta \lambda = 25nm$) and g, r, i filters.
- Observation with 20 medium-band filters -> Similar to lowresolution IFU!

Simultaneous transit observation with multiple telescopes with different filters -> Transmission spectrum

Spec mode

Each unit telescope observes a transit event using different medium-band filters

Color mode

Multiple unit telescopes
observe a transit event
using broadband
filters (g, r, and i).

Fig 2. Observing modes of 7DT.

Validation Target: WASP-74 b

- Orbits a F9-type star with V = 9.7.
- A bloated hot Jupiter ($T_{eq} \sim 1900K$).
- Most of the references show consensus on dominant scattering features from hazes.
 - -> However, the measured scattering slopes are different!

Observation & Lightcurve Fitting

- Commissioning observation conducted with ~10 telescopes.
- 2024.07.02: m450, m500, m550, ..., m850
- 2024.08.31: m400, m475, m525, ..., m775
- Lightcurve construction with an ensemble of reference stars.
- Lightcurve fitting with Juliet (Espinoza et al. 2019)
- Linear detrending using the airmass of each frame.

Fig 3. Examples of lightcurve fitting. We measured transit depths independently for all the observed medium-band filters.

Transmission Spectrum & Retrievals

Fig 4. Transmission spectrum of WASP-74 b.

Fig 5. Scattering slopes retrieved from PLATON.

- The spectrum is **consistent** with the references!
 - -> Even with one transit observation per filter.
- Efficient and stable transit observation.
 - -> Even when some units are under significant systematic effects, we can obtain a spectrum with other units.
- Retrieval: using PLATON (Zhang et al. 2019; 2024).
- The scattering slope is more consistent with Fu et al. 2021.
 - -> Simple Rayleigh scattering?

Conclusion & Plans

- 7DT can efficiently obtain a low-resolution transmission spectrum with medium-band filters.
- Color mode observation
 - -> Robust transit spectroscopy with one visit.
 - -> Self-calibratable as we measure a band with multiple units.
 - -> Prospect for confirming and monitoring transit events!

Fig 6. Transmission spectrum from color mode observation of WASP-121 b.

We welcome collaborations!

References

Espinoza, N. et al. 2019 MNRAS 490(2), 2262-2283 Fu, G. et al. 2021 AJ 162(6), 271 Kim, J. et al. 2024 SPIE Vol. 13094, 442-452 Luque, R. et al. 2020 A&A A50 11 Mancini, L. et al. 2019 MNRAS 485(4), 5168-5179 Spyratos, P. et al. 2023 MNRAS 521(2), 2163-2180

Zhang, M. et al. 2019 PASP, 131(997), 034501 Zhang, M. et al. 2024 ApJ, 169(1), 38.