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What Is light and how do we
describe it?




What are the goals?

Understand and describe... ..the propagation of light

Physically manipulate... from point A to point B.
Numerically imitate...
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Getlty images
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What are the goals?

Understand and describe... ..the propagation of light

Physically manipulate... from point A to point B.
Numerically imitate...

Let me take
our picture.
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What are the goals? - Optics in HCI

Understand and describe... ..the propagation of light

Physically manipulate... from point A to point B...
Numerically imitate...

...through a high-contrast
imaging (HCI) instrument.

Figure courtesy of A. Sivaramakrishnan



Geometric optics vs. wave optics
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JWST optical design. Credit: Gardner et al., 2006.
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Geometric optics vs. wave optics
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ng ht behaves like a wave (and aiso like a particle)

ELECTROMAGNETIC WAVE Light .is an electromagnetic (EM) wave
described by Maxwell’s equations =
vector theory with three components for

each field: E,, E,, E, and M,, M, M,

Electric Field
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ng ht behaves like a wave (and aiso like a particle)

Light is an electromagnetic (EM) wave

described by Maxwell’s equations =
vector theory with three components for

each field: E,, E,, E, and M,, M, M,

ELECTROMAGNETIC WAVE

VIRV Under conditions that apply to an HCI
| instrument?*, this can be approximated
Electric Field by a scalar theory, where all EM field
components follow the same scalar
wave equation =2 light can be
represented as a scalar electric field:

*Light propagates in a dielectric medium that is linear, isotropic,
homogeneous and nondispersive. However, even in an HCI E = E(F)

instrument, not all of these are always true.
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Light is an E-field with phase and amplitude

E(z,y) = A(z,y)e' 2@y

E-field / \Phase
/wavefront Amplitude

/wave field



This figure is reprinted/reused by permission

Light propagates in wavefronts oo™

Az, 1)et@y)

F(x,vy
.

Decreasing concentration of
electromagnetic radiation
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Light propagates in wavefronts

E(x,y) = Alz,y)e' =)

[ wavefront

Plane

O wavefront

/
Y : /
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Point source



Light is a scalar field that propagates

B(x,y, 2,t) = R{ A(z, y, m)e” a0 —i2mt]

/ :

Propagation to arbitrary

positions in space ) @

Point source
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Huygens-Fresnel principle propagates from

point to pomt ks
E1 T,y) // EO z' —cos(@) da’ dy
E- f|eId in point 1 E- fleld in point O b — 2;
y’ y N Wave number
- >( s oint 1 1l i ________ |

I
I i .
. Describes propagation
paint’0 as sum of wavelets
-
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Fraunhofer integral constrains propagation to
far-field

E(z,y) < // A,y e =TT g gy
P

When object sizes in X’ and y’ are negligible
with respect to propagation distance z.
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|ldentify Fourier transform in Fraunhofer integral

E(x,y) o<// A(az',y’)ei¢.e_i§(x/x+y,y)da:'dy/
P

-k
2D Fourier transform: // f(ZC, y>6—25(aj’x+y’y)d$/dy/

Function to transform
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|ldentify Fourier transform in Fraunhofer integral

E(z,y) < // A,y e =TT g gy
P

-k
2D Fourier transform: // f(CE, y>€—z;(g;’g;+y’y)dx/dy/

E(z,y) = F{E('y)}
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An optical system manipulates wavefronts

Input Optical System

Output
wavefront [J;,, = (e.g., telescope)

)
wavefront [,

Light propagates distance z



We identify relevant optical planes

Optical System

Input

Output
wavefront Em

)
wavefront [,

Z; Z) Z3

Light propagates distance z



We identify relevant optical planes

Input
wavefront Em

Optical System

Output

)
wavefront [,

Zout

g ﬂ
Z; Z) Z3

Light propagates distance z

I =|E(z,y)|

Intensity



Each plane holds a relevant wavefront

Optical System

Input

Output
)
wavefront Em

)
wavefront F/ ¢
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Fourier optics deals with pupil and focal planes

Optical System

Input

Output
)
wavefront Em

)
wavefront F/ ¢

Z; Z, Z5
by Eo EA
In Fourier optics, we look at wavefronts in

pupil planes and focal planes.
The are Fourier transforms of each other.
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Simplest optical system: simple telescope

Star at

infinity

22 July 2024

Lens Detector

/
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(e.g., Newtonian
telescope)
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Simplest optical system: simple telescope

Star at

infinity

22 July 2024

Pupil plane (PP) Focal plane (FP)

-

~
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(e.g., Newtonian
telescope)
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Simplest optical system: simple telescope e

El — Aleigbl

22 July 2024

Pupil plane (PP) Focal plane (FP)

-

~
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Fo = Agewﬁ2



Simplest optical system: simple telescope e

Pupil plane

&
||

22 July 2024

Display
complex
numbers?

Pupil plane (PP) Focal plane (FP)

-

~
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Fo = A2€Z¢2



Simplest optical system: simple telescope e
Pupil plane

) Pupil plane (PP) Focal plane (FP)
Real Imaginary

ol NS
| e

Ly = Aleigbl Fo = AQGMQ
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Simplest optical system: simple telescope e
Pupil plane

Pupil plane (PP) Focal plane (FP)
Real Imaginary

O @ .
Oom

El __ Alelgbl EQ _ A262¢2
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Simplest optical system: simple telescope e

Pupil plane

A

: Pupil plane (PP) Focal plane (FP)
ioo @

Amplitude m .
iii o

El — Aleigbl

22 July 2024
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Focal plane
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Simplest optical system: one Fourier transform

Pupil plane Focal plane
Pupil plane (PP) Focal plane (FP
m 1.0 upl p ane ( ) o p ane ( ) m le-16(!) Imaginary

Imaginary o
. o :
Amplitude m iy : Amplitude m
! | 07

, gb Fourier transform J , ¢ U:
By = Aqé 1—E2:A2€Z 2
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Simplest optical system: one Fourier transform

Pupil plane

Real Imaginary

o] |

Amplitude Phase

o] |

B = Ae'¥

22 July 2024

Focal plane
/Pupll plane (I: A Iens iS a 1e-16(2!) |maginary i
! N
- | “Fourier transformer” i i
; 1 e F
* ®

Fourier transform J

)
Ey = F(E1)

Amplitude Phase

1.5
1.0
0.5
0.0
-0.5
-1.0
-1.5

Ey = A26i¢2
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HCI instruments are optical systems and they propagate wavefronts from
one optical plane to the next.

The relationship between pupil and focal planes is a Fourier transform.
-> Pupil planes and focal planes are transformations of each other.

Simple telescope Lyot Coronagraph

-~

B E; By Ey
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Diftraction, properties of the
Fourier transform, resolution




Reminder: I = |E|?

Diffractive optics and Fourier optics

. A simple telescope pupil imposes a circular f(n) 2J1(mpD /A7)
edge that defines the collecting area TpD /A2

* Result is an Airy function in the focal plane

J1 ...Bessel function of first kind
P ...radial distance from optical axis

Pupil plane Focal plane

Simple imager/telescope

a PP FP I

=F=-le

N B A,

Log Intensity
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Reminder: I = |E|?

Diffractive optics and Fourier optics

F(n) 2J1(mpD/A\z)

10-1 7TpD/>\Z
| J1 ...Bessel function of first kind
"V \" .; '| - - . 0

Py [ | | p...radlal distance from optical axis

.‘7, 10-3 ,il \l

S N\ .‘; a ; l i | | .‘ ," \l". N\ Focal pla ne

=) /".\ AYAY . . | \ " \ N\ n .

'E . '/“l "" \ ,' | l. ll ‘ ||’ k |' “ ‘ ; .l " |. "’ ‘\‘| ""\‘\ ‘/\‘ a h CUt h

o 1RIR'R! RERIRIATAVAYA throu

3 10 . H H .' "' ” ' .! |’ || |} g

| | , f ' ) t | |{ | center
107 1

Log Intensity

22 July 2024 Iva Laginja, SSW 2024 36



(All apertures with normalized diameter.)

Simple diffraction examples

Q
— =
- c
— o
Q )
N ©
n ©
o
v
N
-0.4 -0.2 0.0 0.2 0.4 —-20 0 20

Size (M) Separation (A/D)

37
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(All apertures with normalized diameter.)

Simple diffraction examples

Q
— =
& c
~ O
w -
N (O
N ©
o
Q
¥y
-0.4 -0.2 0.0 0.2 0.4 —20 0 20
Size (m) Separation (A/D)
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(All apertures with normalized diameter.)

Simple diffraction examples

Separation (A/D)

-0.4 -0.2 0.0 0.2 0.4
Size (m) Separation (A/D)

39
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(All apertures with normalized diameter.)

Simple diffraction examples

Separation (A/D)

—-0.4 -0.2 0.0 0.2 0.4 -20 0 20
Size (m) Separation (A/D)

40
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(All apertures with normalized diameter.)

Simple diffraction examples

Q
- =
- c
— o
Q -
N ©
n ©
o
)
N
—-04 -0.2 0.0 0.2 0.4 —-20 0 20

Size (m) Separation (A/D)

41
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(All apertures with normalized diameter.)

Simple diffraction examples

Q
- =
- c
— o
Q )
N ©
n ©
o
)
N
-0.4 -0.2 0.0 0.2 0.4 —-20 0 20

Size (m) Separation (A/D)
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(All apertures with normalized diameter.)

Simple diffraction examples

Separation (A/D)

—-0.4 -0.2 0.0 0.2 0.4 -20 0 20
Size (m) Separation (A/D)

43
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(All apertures with normalized diameter.)

Simple diffraction examples

Q
- =
- A\\ c
0 =
n ~— ©
o
()]
Up)]
0.4 -02 00 02 0.4 —20 0 20

Size (m) Separation (A/D)
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Pupil-plane vs. focal-plane units

* Focal plane is expressed in terms of spatial frequencies
 physical scales (or angular scales) are inverse of each other
* The larger the pupil the smaller the core of the PSF

0.4

o
(N]

o
o

Diameter (m)

|
o
[N}

-0.4

-0.4 -0.2 0.0 0.2 0.4 -3 =2 -1 0 1 2 3

i Separation (4/D)
22 July 2024 Diameter (m) Iva Laginja, SSW 2024 45



Angle change in pupil = shift in focal plane

Pupil plane phase rad Focal plane Log(l)

Simple imager/telescope

| | B
Star I —047
T T T T T _3
m -0.4  -0.2 0.0 0.2 0.4
| -10 -5 0 5 10

I Separation (4/D)
K Er Eo /
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Angle change in pupil = shift in focal plane

JO oo l
9 t|p tllt/JItter ) Pupil plane phase rad Focal plane Log(l)

Simple imager/telescope

-10 -5 0 5 10

Separation (4/D)
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Angle change in pupil = shift in focal plane

JO oo l
9 t|p tllt/JItter ) Pupil plane phase rad Focal plane Log(l)

3
0.4 1

2
. _ A

-0.2 1

Simple imager/telescope

—0.4 -

-0.4 -0.2 0.0 0.2 0.4

-10 -5 0 5 10

Separation (4/D)
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Companions and angular resolution

Simple imager/telescope

/" planet PP P
|

_ Lo Lp
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Companions and angular resolution

Simple imager/telescope

/" planet PP P
|

-10 -5 0 5 10
K El E2 / Separation (A/D)
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Companions and angular resolution

Star Planet

2 107

1 e
I
Tgc 10°°

o

= -8

T . : . 0

Sepa ration (A/D) _ _Separation (1/D)
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Normalized intensity

Rayleigh criterion for angular resolution
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10°

10-1 4

102 4

1073 4

10—+ U

Unresolved

Separation (4/D)
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Faint companions and angular resolution

100

Star Two PSFs but one is fainter!
N
| .

10_8 - m

10—10

10—2 _

Normalized intensity

-10 -5 0 5 10

~10 -5 0 5 10
Sepa ration (A/D) Separation (1/D)
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Faint companions and angular resolution

100

Star /\ Two PSFs but one is fainter!

Z 0
%)
-
® Planet
]
.E 10—4 i mr\ |
k5 I \ s
g / -
“© . |
S
@)
= l
10_8 | | m
10-10 i i i i .
-10 -5 0 5 10
-10 -5 0 5 10
Sepa ration (A/D) Separation (A/D)
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Faint companions at small angular separations

102 planet at 4 A/D

i

|
v

100

Star

=
o
N

=
o
I3

=
o
|

o

Normalized intensity

=
o
L

_io _|5 O 4 5 1IO
Separation (4/D)
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Faint companions at small angular separations

102 planet at 4 A/D 102 planetat 2 A/D
Star

3 10-2 1072 - /

= {‘

-

g | i:

E 10 1074 :

= itk :

g 1076 | 1076 - '

© : |

: ' .

O 10°8 : 1078 :

z | |

o —iO 5 0 4 5 10 _ -160 1-(3:? 280 1I.4 3650 1%

Separation (4/D) Separation (4/D)
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Faint companions at small angular separations

102 planet at 4 A/D 102 planet at 2 A/D

; m

—~ 5 / —
&) o /
3 <
c (il
.0 S
= 0 =
© o
5 @'\ = @\
3 b4
-5
~10

-10 =5 0 5 10 -10 -5 0 5 10

Separation (A1/D) Separation (41/D)
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Faint companions at small angular separations

100 - .

Star * Planets with worse flux
> 107 ratio (=fainter p_Ianets).
i even harder to image in
2 o stellar light
T 10 * The closer the planet to
= optical axis, the harder to
£ 1021 image
O
P

10—15_
10718 4
-10 -5 0 5 10
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Faint companions at small angular separations

100 i

Star

=
9
w

=
9
(o)}

=
9
©o

10712 A

Normalized intensity

10—15 i

10718 4

/

10 5 0

22 July 2024

Separation (4/D)

5

Iva Laginja, SSW 2024

* Planets with worse flux
ratio (=fainter planets)
even harder to image in
stellar light

* The closer the planet to
optical axis, the harder to
image

 Starlight suppression
techniques needed
—> coronagraphy

(see next talk)
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Optical aberrations

Amplitude and phase aberrations, sources of aberrations, aberrations by spatial
frequency content

22 July 2024 Iva Laginja, SSW 2024
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Perfect wavefront
Pupil plane

m Imaginar o Imaginary | |
0.8 -0.1
0.4
-0.5
0.2
- -0.7
Amplitude Amplitude m
s 1.5

1.0
0.5
0.0
-0.5
-1.0

-1.5
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Focal plane

Log Intensity

-10 =5 0 5 10

Separation (4/D)

“Perfect” PSF
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Aberrations can occur in amplitude or phase

Pupil plane ~ocal plane

Amplitude Phase Log Intensity

Separation (4/D)

Aeoz—l—igb

EPUP —
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Amplitude aberrations

Amplitude

Anything that changes pupil transmission:
* Uneven reflectivity on mirror
* Unequal reflectivity between segments

* Missing segments

22 July 2024 Iva Laginja, SSW 2024
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P hase aberrations Medium introducing phase aberrations,

e.g. atmosphere, faulty optic

AN

Pupil plane

Phase —
3
0.4 1
2
0.2 1 L,
0.0 1 Lo
-0.2 1 -1
I _
-0.4
T T T T T _3
-0.4 -0.2 0.0 0.2 0.4
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Phase ripples across pupill

No aberration

30

0.4
20

0.2
10

- Q

£ 0.0 2 0
~10

—0.2-
—20

—0.41
-30

—0.4 ~0.2 0.0 0.2 0.4 ~30 -20 -10 0 10 20 30
m A/ID



Phase ripples across pupil . speckles

5 cycles per pupil at5 /D
£ 0.0- =

—0.4 ~0.2 0.0 0.2 0.4 ~30 -20 -10 0 10 20 30
m A/D



Phase ripples across pupil . speckles

10 cycles per pupil at 10 A/D

30

0.41
20

0.21
10
£ 0.0 2 o0
~10

_0.2_
~20

—0.41
~30

0.4  —0.2 0.0 0.2 0.4 30 -20 -10 O 10 20 30

m A/D



Phase ripples across pupil . speckles

15 cycles per pupil at 15 A/D

30

0.4 -
20

0.2 1
10
£ 0.0 2 0
-10

—0.2
-20

—0.4 -
-30

—0.4 ~0.2 0.0 0.2 0.4 ~30 -20 -10 0 10 20 30
m A/ID



Phase ripples across pupil . speckles

20 cycles per pupil at 20 A/D

30

0.4 -
20

0.2 1
10
£ 0.0 2 0
-10

—0.2
-20

—0.4 -
-30

—0.4 ~0.2 0.0 0.2 0.4 ~30 -20 -10 0 10 20 30
m A/ID



Linear combinations of sine waves in pupil

30
0.4 1
20
0.2 1
10
] Q
£ 0.0 = 0
-10
—0.2
-20
—0.4 1
-30
—-0.4 -0.2 0.0 0.2 0.4 —30 —-20 —10 0 10 20 30
m AID
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Any aberration can be expressed as linear
combination of sine waves

* Break down aberrations
by their spatial frequency

* General division due to
occurrence of aberrations
in low, mid and high
spatial frequencies

AID
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Any aberration can be expressed as linear
combination of sine waves

* Break down aberrations
by their spatial frequency

* General division due to
occurrence of aberrations
in low, mid and high
spatial frequencies

AID

-30 =20 -10 0 10 20 30
AID

Is it a planet or is it a speckle?
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Any aberration can be expressed as linear
combination of sine waves Laginja & Pourcelot 2023

Ilva Laginja

Raphaél Pourcelot

—-20 0 20
Angular separation
(A/D)

Is it a planet or is it a speckle?
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Any aberration can be expressed as linear
combination of sine waves Laginja & Pourcelot 2023

It’s not as easy as letting
Pacman clean up...
- need wavefront sensing and
control (WFS&C)
(see talk by Becky Jensen-Clem)

- need post processing
(see talk by Faustine Cantalloube)

—-20 0 20
Angular separation
(A/D)

Is it a planet or is it a speckle?




Low spatial frequency aberrations

No aberration

0.4 -

0.2 1

—0.2 1

~0.41

—0.4 —0.2 0.0 0.2 0.4
m A/D
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Low spatial frequency aberrations

Defocus

—0.4 —0.2 0.0 0.2 0.4
m

22 July 2024 Iva Laginja, SSW 2024

AID

76



Low spatial frequency aberrations

Astigmatism

—0.4 —0.2 0.0 0.2 0.4
m A/ID
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Low spatial frequency aberrations

Coma

0.4 A 10

_0.2_ . _5

~0.41 \/ P

-0.4 -0.2 0.0 0.2 0.4
m
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Low spatial frequency aberrations

04 10
0.2 5
Q

E 00 < ©

-0.2 s

~0.4 -10
10

0.4 / \ 10

02 5

04 A
02

Q
£ 0.0 =z 0
-0.2
~04 \-/
-0.4 —-0.2 0.0 0.2 0.4

22 July 2024

sn20jaq

wisiewsdisy

BWO)

* Aberration sources:
 Thermal settling of telescope
* Misalignment of optics
* Fast tip-tilt jitter
e Results in focal-plane contamination
close to optical axis =2 close to star
* Low-order aberrations contaminate the
prime area of interest for detection of
close-in exoplanets
- motivation for low-order WFS&C
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Mid spatial frequency aberrations

-6 -4 -2 0 2 4 6

22 July 2024

-0 -5 0 5 10
AID

“107°

107°

10—11

10—13

Iva Laginja, SSW 2024

Aberration sources:
* Bad cophasing of segments
* Misalignment of segments
e Radius of curvature error on
segments

* Telescope shown here
contains coronagraph.
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Phase screens have energy in a range of spatial
frequencies

0.4 - , >

| M \

. &
Ll -lﬁ. ‘%_y 1 I
0.4 —0.2 00 0.2 0.4 ~10 0 10
m A/D

AID
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Phase screens have energy in a range of spatial
frequencies

10° 10! 107
Spatial frequency (cycles / pupil)
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Summary

* We need to use wave optics to describe diffraction in a telescope

 We can model light as a scalar field and describe its propagation
between pupil and focal planes with Fourier transforms

 The telescope pupil defines the ideal diffraction pattern at the
diffraction limit

* Faint planets “drown” in the wings of the PSF, especially at small
angular separations

A planet at a certain angular separation manifests as a shifted PSF

* Aberrations contaminate the focal-plane images and make planets
even harder to detect
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