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What is light and how do we 
describe it?
Light as a wave and E-field, Fourier optics and optical systems
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What are the goals?
Understand and describe…
Physically manipulate…
Numerically imitate…

…the propagation of light 
from point A to point B.
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Image credit: 
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What are the goals?

…the propagation of light 
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What are the goals? à Optics in HCI

…the propagation of light 
from point A to point B…

…through a high-contrast 
imaging (HCI) instrument.

Understand and describe…
Physically manipulate…
Numerically imitate…
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Geometric optics vs. wave optics
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JWST optical design. Credit: Gardner et al., 2006.

Spot diagram



Geometric optics vs. wave optics

Image
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JWST optical design. Credit: Gardner et al., 2006.

Credit: NASA/STScI.

Spot diagram (JWST)



Light behaves like a wave (and also like a particle)

Light is an electromagnetic (EM) wave 
described by Maxwell’s equations à 
vector theory with three components for 
each field: Ex, Ey, Ez and Mx, My, Mz
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Light behaves like a wave (and also like a particle)

*Light propagates in a dielectric medium that is linear, isotropic, 
homogeneous and nondispersive. However, even in an HCI 
instrument, not all of these are always true.

Light is an electromagnetic (EM) wave 
described by Maxwell’s equations à 
vector theory with three components for 
each field: Ex, Ey, Ez and Mx, My, Mz

Under conditions that apply to an HCI 
instrument*, this can be approximated 
by a scalar theory, where all EM field 
components follow the same scalar 
wave equation à light can be 
represented as a scalar electric field: 
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Light is an E-field with phase and amplitude

E-field
/wavefront
/wave field

Amplitude Phase
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Light propagates in wavefronts

22 July 2024 Iva Laginja, SSW 2024 12

This figure is reprinted/reused by permission 
from ©Iowa State University Center for 
Nondestructive Evaluation (CNDE).



Light propagates in wavefronts
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Light is a scalar field that propagates
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Point source

Propagation to arbitrary 
positions in space



Huygens-Fresnel principle propagates from 
point to point
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Fraunhofer integral constrains propagation to 
far-field
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When object sizes in x’ and y’ are negligible 
with respect to propagation distance z.
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Identify Fourier transform in Fraunhofer integral

2D Fourier transform:

Function to transform
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Identify Fourier transform in Fraunhofer integral

2D Fourier transform:



An optical system manipulates wavefronts

Output
wavefront

Optical SystemInput
wavefront

Light propagates distance z

(e.g., telescope)
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We identify relevant optical planes

Output
wavefront

Optical System

Input
wavefront

Light propagates distance z

z1 z2 z3
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We identify relevant optical planes

Output
wavefront

Optical System

Input
wavefront

Light propagates distance z

z1 z2 z3 zout
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Intensity



Each plane holds a relevant wavefront

Output
wavefront

Optical System

Input
wavefront

z1 z2 z3
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Fourier optics deals with pupil and focal planes

Output
wavefront

Optical System

Input
wavefront

z1 z2 z3

In Fourier optics, we look at wavefronts in 
pupil planes and focal planes.

The are Fourier transforms of each other.
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Simplest optical system: simple telescope

Star at

infinity

(e.g., Newtonian 
telescope)

Lens Detector

22 July 2024 Iva Laginja, SSW 2024 24



Simplest optical system: simple telescope

Pupil plane (PP) Focal plane (FP)

(e.g., Newtonian 
telescope)

22 July 2024 Iva Laginja, SSW 2024 25

Star at

infinity



Simplest optical system: simple telescope

Pupil plane (PP) Focal plane (FP)

(e.g., Newtonian 
telescope)
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Simplest optical system: simple telescope

Pupil plane (PP) Focal plane (FP)

(e.g., Newtonian 
telescope)

Display 
complex 
numbers?
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Pupil plane



Simplest optical system: simple telescope

Pupil plane (PP) Focal plane (FP)

(e.g., Newtonian 
telescope)

Pupil plane
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Simplest optical system: simple telescope

Pupil plane (PP) Focal plane (FP)

(e.g., Newtonian 
telescope)
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Simplest optical system: simple telescope

Pupil plane (PP) Focal plane (FP)

(e.g., Newtonian 
telescope)

Focal plane
Real Imaginary

PhaseAmplitude

Real Imaginary

PhaseAmplitude
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Simplest optical system: one Fourier transform

Pupil plane (PP) Focal plane (FP)

Fourier transform
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Simplest optical system: one Fourier transform

Pupil plane (PP) Focal plane (FP)

Fourier transform

A lens is a
“Fourier transformer”
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HCI instruments are optical systems and they propagate wavefronts from 
one optical plane to the next.

Simple telescope Lyot Coronagraph

The relationship between pupil and focal planes is a Fourier transform.

à Pupil planes and focal planes are transformations of each other.
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PP FP



Diffraction, properties of the 
Fourier transform, resolution
Diffraction patterns, units, angular resoluton, wavelength dependence
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Diffractive optics and Fourier optics
• A simple telescope pupil imposes a circular 

edge that defines the collecting area
• Result is an Airy function in the focal plane

Pupil plane Focal plane
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Intensity Log Intensity

PP FP

Simple imager/telescope

Reminder:

( )
…Bessel function of first kind
…radial distance from optical axis



Focal plane

Log Intensity

Pupil plane

Diffractive optics and Fourier optics

Simple imager/telescope
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Cut 
through 
centerLo

g 
in

te
ns

ity
Reminder:

( )
…Bessel function of first kind
…radial distance from optical axis



Simple diffraction examples
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(All apertures with normalized diameter.)



Simple diffraction examples
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(All apertures with normalized diameter.)



Simple diffraction examples
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(All apertures with normalized diameter.)



Simple diffraction examples
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(All apertures with normalized diameter.)



Simple diffraction examples

22 July 2024 Iva Laginja, SSW 2024 41

(All apertures with normalized diameter.)



Simple diffraction examples
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(All apertures with normalized diameter.)



Simple diffraction examples

22 July 2024 Iva Laginja, SSW 2024 43

(All apertures with normalized diameter.)



Simple diffraction examples
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(All apertures with normalized diameter.)



• Focal plane is expressed in terms of spatial frequencies
• physical scales (or angular scales) are inverse of each other
• The larger the pupil the smaller the core of the PSF

D
1.22 𝜆/D

Pupil-plane vs. focal-plane units
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PP FP

Angle change in pupil à shift in focal plane
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Simple imager/telescope

Focal plane Log(I)Pupil plane phase

Star

Separation (𝜆/D)

rad



PP FP
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Simple imager/telescope

Pupil plane phase Focal plane Log(I)

Separation (𝜆/D)

rad

Angle change in pupil à shift in focal plane
à tip-tilt/jitter !



PP FP
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Simple imager/telescope

Pupil plane phase Focal plane Log(I)

Separation (𝜆/D)

rad

Angle change in pupil à shift in focal plane
à tip-tilt/jitter !
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Companions and angular resolution

PP FP

Simple imager/telescope

Star

Planet
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PP FP

Simple imager/telescope

Star

Planet

Star

Planet

Companions and angular resolution

Separation (𝜆/D)
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- - Star - -Planet

Rayleigh criterion for angular resolution
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Two PSFs but one is fainter!

Star

Planet

Faint companions and angular resolution
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Star

Planet

Faint companions and angular resolution

Planet

Star Two PSFs but one is fainter!
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Faint companions at small angular separations
10-2 planet at 4 𝜆/D 
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Faint companions at small angular separations
10-2 planet at 4 𝜆/D 10-2 planet at 2 𝜆/D 
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Faint companions at small angular separations
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Planet

Star

Planet

10-2 planet at 4 𝜆/D 10-2 planet at 2 𝜆/D 

Separation (𝜆/D)Separation (𝜆/D)

Se
pa

ra
tio

n 
(𝜆

/D
)

Se
pa

ra
tio

n 
(𝜆

/D
)



22 July 2024 Iva Laginja, SSW 2024 58

Faint companions at small angular separations

0 10-10
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10-10 planet

• Planets with worse flux 
ratio (=fainter planets) 
even harder to image in 
stellar light
• The closer the planet to 

optical axis, the harder to 
image
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Faint companions at small angular separations

0 10-10

Star

5-5
Separation (𝜆/D)
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10-10 planet

• Planets with worse flux 
ratio (=fainter planets) 
even harder to image in 
stellar light
• The closer the planet to 

optical axis, the harder to 
image
• Starlight suppression 

techniques needed
à coronagraphy
(see next talk)



Optical aberrations
Amplitude and phase aberrations, sources of aberrations, aberrations by spatial 
frequency content
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Perfect wavefront
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Aberrations can occur in amplitude or phase

PhaseAmplitude

Separation (𝜆/D)

Pupil plane Focal plane
Log Intensity
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Amplitude aberrations

PhaseAmplitude

Separation (𝜆/D )

Log Intensity

Anything that changes pupil transmission:
• Uneven reflectivity on mirror
• Unequal reflectivity between segments
• Missing segments
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Phase aberrations

PhaseAmplitude

Pupil plane
Medium introducing phase aberrations,

e.g. atmosphere, faulty optic
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Phase ripples across pupil
No aberration
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5 cycles per pupil

Phase ripples across pupil Pair of speckles
at 5 𝜆/D
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Phase ripples across pupil
10 cycles per pupil

Pair of speckles
at 10 𝜆/D
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Phase ripples across pupil
15 cycles per pupil

Pair of speckles
at 15 𝜆/D
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Phase ripples across pupil
20 cycles per pupil

Pair of speckles
at 20 𝜆/D
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Linear combinations of sine waves in pupil



22 July 2024 Iva Laginja, SSW 2024 71

• Break down aberrations 
by their spatial frequency

• General division due to 
occurrence of aberrations 
in low, mid and high 
spatial frequencies

Any aberration can be expressed as linear 
combination of sine waves



22 July 2024 Iva Laginja, SSW 2024 72

Any aberration can be expressed as linear 
combination of sine waves

• Break down aberrations 
by their spatial frequency

• General division due to 
occurrence of aberrations 
in low, mid and high 
spatial frequencies

Is it a planet or is it a speckle?
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Any aberration can be expressed as linear 
combination of sine waves Laginja & Pourcelot 2023

Is it a planet or is it a speckle?
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Any aberration can be expressed as linear 
combination of sine waves Laginja & Pourcelot 2023

Is it a planet or is it a speckle?

It’s not as easy as letting 
Pacman clean up…

àneed wavefront sensing and 
control (WFS&C)

à need post processing
(see talk by Becky Jensen-Clem)

(see talk by Faustine Cantalloube)
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Low spatial frequency aberrations
No aberration
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Low spatial frequency aberrations
Defocus
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Low spatial frequency aberrations
Astigmatism



22 July 2024 Iva Laginja, SSW 2024 78

Low spatial frequency aberrations
Coma
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Low spatial frequency aberrations

• Aberration sources:
• Thermal settling of telescope
• Misalignment of optics
• Fast tip-tilt jitter

• Results in focal-plane contamination 
close to optical axis à close to star

• Low-order aberrations contaminate the 
prime area of interest for detection of 
close-in exoplanets
à motivation for low-order WFS&C

Defocus
Astigm

atism
Com

a
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Mid spatial frequency aberrations

Aberration sources:
• Bad cophasing of segments
• Misalignment of segments
• Radius of curvature error on 

segments

* Telescope shown here 
contains coronagraph.
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Phase screens have energy in a range of spatial 
frequencies
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Phase screens have energy in a range of spatial 
frequencies
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Summary

• We need to use wave optics to describe diffraction in a telescope
• We can model light as a scalar field and describe its propagation 

between pupil and focal planes with Fourier transforms
• The telescope pupil defines the ideal diffraction pattern at the 

diffraction limit
• Faint planets “drown” in the wings of the PSF, especially at small 

angular separations
• A planet at a certain angular separation manifests as a shifted PSF
• Aberrations contaminate the focal-plane images and make planets 

even harder to detect


