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Introduction

The rise in computational power and the advent of advanced AI models offer
a promising solution to these challenges. AI has shown remarkable success
in handling vast datasets across various fields, yet its potential in astronomy,
specifically for direct exoplanet imaging, remains largely untapped. This
project aims to leverage AI to uncover new exoplanets and enhance the
detection of circumstellar disks. Even a single new protoplanet discovery
could transform our understanding of planet formation. Moreover, improving
H-band disk detection by a factor of �50 will provide crucial insights into the
dust properties of planet-forming and debris disks.
This project seeks to develop a streamlined AI-driven approach to analyze

both existing and future datasets of VLT/SPHERE, moving beyond the
current labor-intensive techniques. By integrating AI into exoplanet imaging,
we aim to pave the way for new discoveries and a deeper understanding of
exoplanetary systems.

1 State of the Art

Several methodologies are available in the post-processing procedure of
the observations. Under Reference Differential Imaging (RDI), statistical
methods such as Principle Component Analysis (PCA[1]) and Non-negative
Matrix Factorization ([2]), are generalized for data imputation. As the recent
AO improvements have enhanced image quality, the lack of revolutionary
methods severely hinders the analysis of high-contrast imaging data. We
herein propose to develop deep semi-supervised learning techiniques for high-
contrast imaging data analysis.

Research Goals

•Automate binary classification of reference and target star from GPI and
SPHERE.

• Imputation of coronagraphic data, with a focus on avoiding self- and over-
subtraction to image new planets and characterize circumstellar disks.

•Using meta data to recover the point spread functions (PSFs), thus boosting
the observation efficiency from �50% (RDI imaging when reference star
exposures are needed) to 100% by removing the need for reference stars.

2 Methodology and Preliminary Analysis

2.1 The classification Model: labeling a reference star, or a target?

Figure 1: Top: The Semi-supervised CNN model employing a pseudo loss technique for the polarized image classification discussed
in section 2.1. Bottom: The Semi-supervised SOS-VAE model for the imputation of reference image discussed in section 2.2.

Our VLT/SPHERE dataset includes 288 labeled and 2439 unlabeled
circumstellar images in polarized light. We use 10% of the labeled images for
validation and the rest, along with all unlabeled images, for training. Our

CNN architecture, inspired by the holistically-nested edge detection model,
focuses on edge response extraction for binary classification. Using pseudo-
labeling, we train our model for 250 epochs with PyTorch’s Adam optimizer
(batch size: 16, learning rate: 0.01). Our framework achieves an 87.6%
classification accuracy on the validation set, outperforming the baseline PCA
and logistic classifier methods (< 80% accuracy).

2.2 The Imputation Model: stellar signals on exoplanetary objects.

With pairs of labelled target and reference images from section 2.1, I will
adopt the Variational Autoencoders (VAEs) approach for the reduction and
imputation of our images, specifically adopting the Structured Observation
Space VAE (SOS-VAE)approach. Unlike standard VAEs, which use pixel-
wise independent distributions, SOS-VAE incorporates spatial dependencies
with a fully populated covariance matrix. This method aligns with the
modified Rician distribution expected from AO system speckles. I will mask
non-central regions of reference images to isolate labeled speckles, treating
the central region with potential target objects as unlabeled data. Our semi-
supervised SOS-VAE model, starting with 5 latent variables, aims to improve
disk image recovery. Performance will be compared using PCA, DIKL, and
random forest imputation models.

Figure 2: (a) KLIP imputation with unrealistic negative values indicating overfitting. (b) NMF imputation showing scalability
issues. (c) KLIP polarization fraction calculated from (a). (d) NMF polarization fraction derived from (b). (e) Example training
data with random masks and the corresponding labels for the SOS-VAE model , which is aimed to outperform both NMF and KLIP.
The absence of a label is denoted by a blank.

3 Conclusions

This project will deliver significant advancements in exoplanet imaging
through high-quality circumstellar disk images, polarization fraction maps,
and identification of direct imaging candidate planets. By publicly releasing
our deep learning-based pipeline, we will facilitate transfer learning for future
datasets, addressing the scarcity of exoplanet images.
Our work aligns with NASA’s mission objectives to enhance coronagraph

contrast and efficiency, supporting initiatives in planetary data archiving and
discovery data analysis. The developed tools and methods will streamline
the discovery and characterization of exoplanets, contributing valuable
resources to the astronomical community and advancing our understanding
of planetary formation and evolution.
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