

Zahra Ahmed^{1*}, Stuart Shaklan², Simone D'Amico¹ ¹Space Rendezvous Laboratory, Stanford University ²Jet Propulsion Laboratory, California Institute of Technology *zjahmed@stanford.edu

Why Starshades?

Achieving Habitable Worlds Observatory's goal of imaging and characterizing ~25 habitable worlds will require advancements in starlight suppression to achieve 10⁻¹⁰ contrast

Rendering of starshade-telescope system. Source: Caltech/JPL.

Starshades' ability to achieve high contrast coupled with their small IWA and broad bandwidth make them a powerful characterization tool in the UV, complementary to coronagraphs.

Biosignatures in the Ultraviolet

The 0.25 μm ozone feature is a key biosignature both in modern and Proterozoic Earth-like atmospheres

Key biosignatures in Modern Earth spectra. Source: Astro2020 Decadal Survey, Jacob Lustig-Yaeger

Ultraviolet Starshade Design

UV Starshade design introduced in Shaklan, S. et al. 2023 [1]

Starshade petals are deformed and displaced to demonstrate robustness to manufacturing and deployment defects far beyond what is expected based on laboratory experiments [2-4]

Exoplanet Detection and Characterization in the Ultraviolet using a Starshade Complement for Habitable Worlds Observatory

Project Objective

Investigate the ability to characterize Earth-like exoplanets using a starshade to constrain the 0.25 μm ozone feature with low resolution spectroscopy.

Starshade Simulations

Data cubes simulated using the Starshade Simulation Toolkit for Exoplanet Reconnaissance (SISTER) [5]

Instrument and astrophysical components included in the data cubes, shown for 300-325 nm band. Scattered light exozodiacal dust images provided by Miles Currie [6] and based on n-body simulations developed by Chris Stark [7].

Simulation Parameters

Parameter	
Imaging Bandpass	250 - 500
System Distance	
Target Star	S
Planet	Modern Earth-t
Planet Orbital Position	0,30,60,9
Disk Inclination	0,
Exozodi Density	1, 5, 1
	Parameter Imaging Bandpass System Distance Target Star Planet Planet Orbital Position Disk Inclination Exozodi Density

Noiseless images shown for 300 – 325 nm band for a 60° inclined system. (*Top*) Varying phase angle with 5 zodis. (*Bottom*) Varying zodis for a planet with phase angle of 115°.

Value(s)nm with 25 nm bands 10 pcSolar-type star twin in a circular 1 AU orbit 00, 120, 150, 180 degrees 30, 60 degrees 10, 20, 50, 100 zodi

