

Jet Propulsion Laboratory California Institute of Technology

2024 Sagan Exoplanet Summer Hybrid Workshop

Detecting Eclipse Timing Variation Planets with Other Methods Ekrem M. Esmer

Department of Physics and McDonnell Center for the Space Sciences, Washington University, St. Louis, MO 63130, USA ekrem@wustl.edu McDonnell Center for the Space Sciences Postdoctoral Fellow

Eclipse Timing Variation Method

Eclipse Timing Variation (ETV) analysis is a method used to detect and characterize additional bodies in binary star systems. It involves precisely measuring the times of eclipses and looking for deviations from a constant period. These variations can indicate the gravitational influence of a third body, such as a planet or another star, causing the binary system to wobble. By analyzing these timing deviations, the presence, mass, and orbit of the additional objects can be inferred, even if they are not directly observable. This technique is especially useful for finding circumbinary planets, which orbit around both stars of the binary system in a p-type (planetary-type) orbit.

More than half of the 60 circumbinary planets detected so far have been discovered via the eclipse timing variation method.

V2051 Oph b ⁵	7.30	9.00	0.37	190.20	0.0103	21.64	62.2	153.9	8.94	0.0006	0.0005
DE CVn b ⁶	11.50	5.75	0	-	0.0136	11.22	66.9	281.1	372.49	-	0.0011
QS Vir ⁷	6.44	4.20	0.37	38.30	0.0107	7.86	21.1	177.8	161.97	0.0017	0.0012
V893 Sco ⁸	9.50	4.50	0.30	-	0.0100	10.19	43.7	283.1	72.08	-	0.0010
DV UMa b ⁹	26.20	8.60	0.44	26.11	0.0070	17.58	149.5	492.6	42.81	0.0006	0.0004
DD CrB b ¹⁰	1.36	-	0	-	0.1720	10.46	9.0	51.6	15.05	-	0.0010
SDSS-1456 b ¹¹	16.70	-	0.05	23.70	0.0145	13.05	109.0	500.0	53.01	-	0.0008
GK Vir b ¹²	0.95	7.38	0.14	198.0	0.0170	24.34	9.7	24.3	29.87	0.0010	0.0011
HW Vir b ¹³	25.10	7.90	0.45	359.0						0.0128	0.0103
HW Vir c ¹³	13.90	4.57	0.27	13.0	0.1750	28.21	317.0	1398.7	88.18	0.0204	0.0178
Kepler-451 b ¹⁴	1.86	0.90	0.33	302.0						0.0856	0.1059
Kepler-451 c ¹⁴	1.61	2.10	0.29	7.0						0.0513	0.0454
Kepler-451 d ¹⁴	1.76	0.20	0	-	0.0205	4.93	8.9	512.8	11.75	-	0.4767
NN Ser b ¹⁵	7.33	5.35	0.08	43.0						0.0019	0.0018
NN Ser c ¹⁵	2.30	3.43	0.19	249.0	0.0211	16.05	67.4	305.6	21.27	0.0024	0.0029
V1828 Aql b ¹⁶	8.00	2.90	0.52	98.0						0.0626	0.0301
V1828 Aql c ¹⁶	2.90	1.90	0	(=)	0.1880	7.00	50.2	534.8	7.85	-	0.0460
NY Vir b ¹⁷	2.78	3.39	0	-						-	0.0206
NY Vir c ¹⁷	4.49	7.54	0.44	333.0	0.1500	27.00	56.8	238.2	24.20	0.0092	0.0093
UZ For b ¹⁸	10.00	5.70	0.69	120.3						0.0029	0.0009
UZ For c ¹⁸	3.22	3.00	0.45	347.4	0.0113	14.75	73.5	367.6	47.14	0.0020	0.0017
V470 Cam b ¹⁹	28.30	3.27	0	-						-	0.0327
V470 Cam c ¹⁹	12.40	4.71	0		0.2300	14.48	171.0	1672.2	7.98	-	0.0227
HU Aqr b ²⁰	16.80	5.48	0.23	92.3						0.0009	0.0007
HU Aqr c ²⁰	20.80	6.38	0.08	72.6	0.0080	19.51	181.0	857.4	77.4	0.0006	0.0006
							0		8		

¹Beuermann et al. (2011), ²Almeida et al. (2019), ³Han et al. (2015), ⁴Qian et al. (2012), ⁵Qian et al. (2015), ⁶Han et al. (2018), ⁷Qian et al. (2010), ⁸Bruch (2014), ⁹Han et al. (2017), ^{10,11}Wolf et al. (2021), ¹²Almeida et al. (2020), ¹³Esmer et al. (2021), ¹⁴Esmer et al. (2022), ¹⁵Marsh et al. (2014), ¹⁶Almeida et al. (2013), ¹⁷Lee et al. (2014), ¹⁸Khangale et al. (2019), ¹⁹Sale et al. (2020), ²⁰Goździewski et al. (2015)

Detection with Other Methods

- The transit probabilities of ETV objects are very low. None of the known ETV objects, including those observed with Kepler or TESS data, have been confirmed through transits.
- Radial velocity amplitudes are within an achievable range. However, such \bullet confirmation requires years to decades of radial velocity follow-up observations.
- While angular separations (A_{imaging} in Table 1) for imaging may be somewhat large enough, the contrasts are not well-known. Reflected light contrast should be between 10⁻⁸ - 10⁻¹⁰ (calculated from Currie et al. 2023), while thermal emissions are unknown. Future imaging facilities are expected to confirm ETV detections.

References

- Baştürk et al. 2023, https://doi.org/10.25518/0037-9565.11197
- Currie et al. 2023, https://arxiv.org/abs/2205.05696
- Esmer et al. 2022, https://doi.org/10.1093/mnras/stac357
- Getley et al. 2017, https://doi.org/10.1093/mnras/stx604