Dynamically Constraining PDS 70 Planet Masses

David Trevascus¹, Wolfgang Brandner¹, Sylvestre Lacour², Arthur Vigan³, Jason Wang⁴, Laura Kreidberg¹, Emily Rickman⁵, William Balmer⁶, Jens Kammerer⁷, Gael Chauvin⁸, Joel Sanchez¹, Jonas Sauter¹, Mickael Bonnefoy⁹, Sasha Hinkley¹⁰ (Affiliations can be found at the bottom of the poster)

What is PDS 70?

PDS 70 is the only protoplanetary system with **multiple confirmed planet detections**. This makes it ideal for studying the processes of planetary formation.

How do we observe the planets?

PDS 70 b and c were some of the first planets to be observed through **direct imaging**^{1,2}. We use the high

angular resolution of the **VLT/GRAVITY** interferometer to produce precise relative astrometry.

How precise is GRAVITY? The dual field mode of GRAVITY can achieve precision as low as **50μas**³.

Figure 1: Sample orbits fit to astrometry data (black) for PDS 70 b (blue) and PDS 70 c (red). Astrometry is given relative to the star.

Orbital Parameters with MCMC

We use the Python MCMC sampling code orbitize!⁴ to fit orbits to the astrometry. orbitize! uses the parallel-tempered affine-invariant sampler ptemcee⁵.

Coplanarity vs Stability

In our MCMC models we assume either a coplanarity or stability prior to reduce the size of the parameter space:

- Coplanarity assumes that the inclination of the planet orbits are within 10 degrees of the disk
- Stability assumes the planet orbits do not cross

How do we fit planet masses?

Since the PDS 70 system has two planets we can use the **size of the planet-star interactions** to fit the planet masses⁶. However, the fraction of the orbit for which we have observed these planets is small, which makes obtaining precise mass estimates difficult.

N-Body Stability Analysis

For the models where a stability prior is added, we also perform n-body analysis to reduce the mass posterior:

- 1. Parameter sets from MCMC provide initial conditions
- 2. N-body code REBOUND⁷ integrates backwards by the age of the PDS 70 system (8 Myr)
- 3. Parameter sets are rejected if the planets

Figure 2: Posterior probability distribution for planet masses,

assuming a stability prior and after n-body stability analysis.

a) Crash OR

b) Are ejected from the system

References

- 1. Keppler et al, 2018
- 2. Haffert et al, 2019
- 3. GRAVITY Collaboration, 2020
- 4. Blunt et al, 2019
- 5. Vousden et al, 2016
- 6. Wang et al, 2021
- 7. Rein et al, 2012

Affiliations

- 1. Max Planck Institute for Astronomy, Heidelberg, Germany
- 2. Observatoire de Paris, Meudon, France
- 3. Aix Marseille University, Marseille, France
- 4. Northwestern University, Evanston, USA
- 5. Space Telescope Science Institute, Baltimore, USA
- 6. John Hopkins University, Baltimore, USA
- 7. European Southern Observatory, Garching, Germany
- 8. Observatoire de la Côte d'Azur, Nice, France
- 9. Université Grenoble Alpes, Grenoble, France
- 10. University of Exeter, Exeter, UK