A Tale of Two Molecules: The Underprediction of CO₂ and Overprediction of PH₃ in Atmospheric Models Samuel Beiler¹, Michael Cushing¹, Davk Kirkpatrick², Adam Schneider³, Harshil Kothari¹, Sagnick Mukherjee⁴, Mark Marley⁵, Channon Visscher^{6,7}

¹University of Toledo, Toledo, OH, ²IPAC, Pasadena, CA,³USNO, Flagstaff, AZ, ⁴University of California, Santa Cruz, California, ⁵University of Arizona, Tuscon, AZ, ⁶Dordt University, Sioux Center, IA, ⁷SSI, Boulder, CO

Email: SamuelBeiler@rockets.utoledo.edu

Atmospheric Models Generally Fit Well... But... Fitting JWST NIRSpec spectra of T8-Y0 dwarfs with a variety of forward models reveals poor fits at ~4.3 microns where there are C0₂ and PH₃ features

PICASO model grid that includes CO_2 and PH_3 as parameters prefers >1000× more CO_2 and >2× less PH_3

What physical or chemical processes could result in these abundances?

Quenching CO_2 via CO instead of CH_4 results in ~500× higher abundances of CO_2

Our understanding of P pathways is incomplete and/or $NH_4H_2PO_4$ is condensing