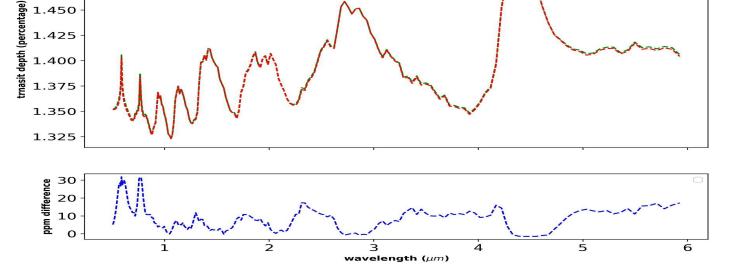
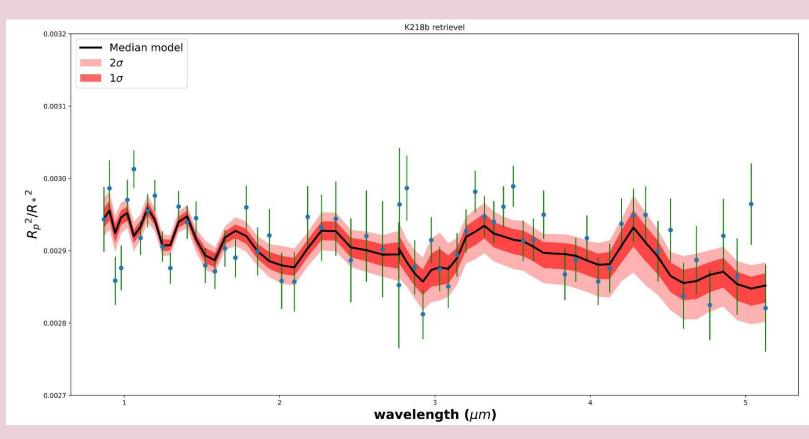


Unravelling the Atmospheres of Faraway Worlds with Adaptable Planetary Atmosphere Model

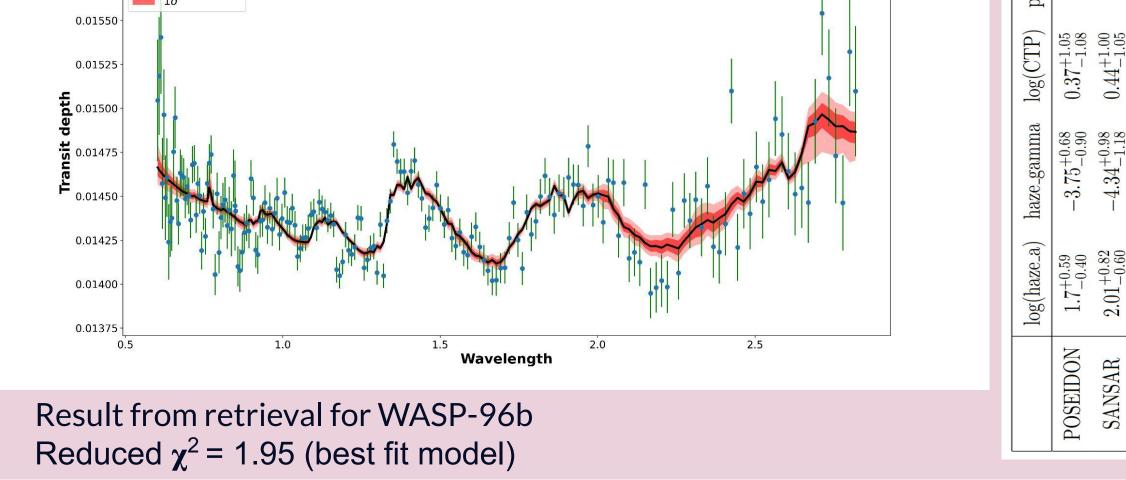
¹Avinash Verma (avinash.verma@niser.ac.in), ¹Jayesh M. Goyal (jgoyal@niser.ac.in) ¹National Institute of Science Education and Research (NISER), Odisha, India



Results



.hy 16 13 13 19 --- POSEIDON --- This work bhi(pa 0.91_ 0.82_ 0.88₀ 0.01575 2σ 1.475 1σ


• We have developed our own forward model from scratch which is fast (~30ms for

Forward model comparison from POSEIDON [2] for WASP-96b

Preliminary results from retrieval for K218b Reduced χ^2 = 1.081 (best fit model)

	$\log(H2O)$	$\log(CO)$	$\log(\text{CO2})$	$\log(Na)$	$\log(K)$
Aurora [3]	$-3.59\substack{+0.35\\-0.35}$	$-3.25\substack{+0.91 \\ -5.06}$	$-4.38^{+0.47}_{-0.57}$	$-6.85^{+2.48}_{-3.10}$	$-8.04^{+1.22}_{-1.71}$
CHIMERA [4]	$-3.73^{+0.21}_{-0.20}$	$-3.39\substack{+0.74 \\ -3.71}$	$-4.80^{+0.37}_{-0.52}$	$-4.10^{+0.60}_{-2.31}$	$-7.14\substack{+0.60\\-1.02}$
POSEIDON [2]	$-3.70\substack{+0.36 \\ -0.32}$	$-3.22^{+0.81}_{-2.83}$	$-4.87^{+0.54}_{-0.86}$	$-5.13^{+1.07}_{-3.13}$	$7.90^{+0.85}_{-1.59}$
SANSAR	$-3.73^{+0.37}_{-0.35}$	$-3.22\substack{+0.76\\-2.79}$	$-4.75\substack{+0.52\\-0.66}$	$-6.51\substack{+2.30\\-3.11}$	$-8.45^{+1.60}_{-1.49}$

Comparison of VMR from other retrieval codes for WASP-96b

- one run) and accurate.
- Developed in-house high resolution opacity file database ($\Delta nu = 0.001 \text{ cm}^{-1}$) to be used for large range of exoplanet atmospheres.
- We benchmark our model with results of WASP-96b from different retrieval codes and found it to be in agreement.
- We also run the retrieval for K218-b and found good fit between the model and observed spectra. More investigation will follow for abundances retrieval.
- We have been able to put good constrains on reference radius, cloud parameters, haze, temperature as well as as abundances with our code
- We have also used correlated-k as a method for opacity treatment along with opacity sampling. Here the k-tables are generated using exo_k[5]

Future Work

- We are adding chemistry, emission and radiative convective framework
- We will be making the framework more general (i.e. 3D atmosphere, mie scattering,)
- Study of earth as an exoplanet
- More retrievals will follow

Acknowledgement

We acknowledge support from the SERB SRG Grant SRG/2022/000727-G for this work.

[1] M.D.J. Hollis, M. Tessenyi, G. Tinetti (2013) [2] MacDonald, R. J., (2023). POSEIDON: A Multidimensional Atmospheric Retrieval Code for Exoplanet Spectra [3] Aurora (Welbanks & Madhusudhan 2021)

• We also acknowledge NISER Faculty Start-up grant that provided computational resources for this work.

Cloud

[4] CHIMERA <u>https://github.com/mrline/CHIMERA</u>

