LARGE INTERFEROMETER FOR EXOPLANETS

Interferometry for Exoplanets

EHzürich

CENTRE FOR ORIGIN & PREVALENCE OF LIFE

SPACE

ETH zürich

2023 Sagan Summer Workshop July 25, 2023 Caltech

Authors:

Sascha P. Quanz ETH Zurich What is interferometry?

What is interferometry?

"Interferometry is a technique which uses the interference of superimposed waves to extract information" (Wikipedia)

What is the motivation to use **optical**, **nulling interferometry** in exoplanet science?

Directly detect photons from exoplanets – in particular nontransiting ones – to study their atmospheres

high spatial resolution: the planet-star separation is extremely small ..high contrast performance: the planet is orders of magnitude fainter than the star 3 high sensitivity: the planet signal is intrinsically very faint

 $\vartheta \sim 1.22 \, \lambda/D$

0.34" (or 3.4 AU @ 10 pc) for D=8.2 m and $\lambda = 11 \,\mu$ m 0.07" (or 0.7 AU @ 10 pc) for D=39 m and $\lambda = 11 \,\mu$ m 0.0003" (or 0.003 AU @ 10 pc) for D=39 m and $\lambda = 0.5 \,\mu$ m

Based on Kaltenegger 2017

How does **optical nulling interferometry** work?

Example: Earth-Sun system seen from 10 pc at 10 micron wavelength

Example: Earth-Sun system seen from 10 pc at 10 micron wavelength

- In one branch, a π/2 phase shift is introduced to enable the difference map
- Phase chopping between
 Outputs 3 & 4 makes instrument
 less susceptible to perturbation

Based on Defrère et al. 2018b

Investigating different architectures

 Double Bracewell vs. various Kernel Nulling approaches

0

π/2

cВ

Angular position (λ_B/B)

Where was this technique successfully used?

The Hunt for Observable Signatures of Terrestrial Systems (HOSTS) at the Large Binocular Telescope Interferometer (LBTI)

...was a NASA-funded survey of midinfrared emission from exozodiacal dust in the habitable zones of nearby main sequence stars, using the LBTI's N-band (10 micron) **nulling mode**.

The goal was to inform the design of future space missions to directly detect and characterize exo-Earths.

THE ASTRONOMICAL JOURNAL, 159:177 (18pp), 2020 April © 2020. The American Astronomical Society. All rights reserved. https://doi.org/10.3847/1538-3881/ab7817

The HOSTS Survey for Exozodiacal Dust: Observational Results from the Complete Survey

Where will this technique be applied in the future?

On the ground: VLT/NOTT

L-band nulling interferometry at the VLTI with Asgard/NOTT

L-band nulling interferometry at the VLTI with Asgard/NOTT

A&A 671, A110 (2023) https://doi.org/10.1051/0004-6361/202244351 © The Authors 2023

Asgard/NOTT: L-band nulling interferometry at the VLTI

I. Simulating the expected high-contrast performance

Romain Laugier¹, Denis Defrère¹, Julien Woillez², Benjamin Courtney-Barrer^{2,10}, Felix A. Dannert^{3,4}, Alexis Matter⁵, Colin Dandumont⁶, Simon Gross⁷, Olivier Absil⁶, Azzurra Bigioli¹, Germain Garreau¹, Lucas Labadie⁹, Jérôme Loicq^{6,8}, Marc-Antoine Martinod¹, Alexandra Mazzoli⁶,

L-band nulling interferometry at the VLTI with Asgard/NOTT

Search for young gas giant planets

- in gaps of transition disks
- around the nearest youngest stars

In space: Large Interferometer For Exoplanets (LIFE)

The LIFE mission

- ...is a space-based formationflying mid-infrared (nulling) interferometer
- ...consists of 4 collector spacecraft separated by tens to hundreds of meters and a beam combiner
- ...covers the mid-infrared wavelength range between ~4-18.5 µm with a spectral resolution of R ~ 50-100 (tbc)

Heritage

Space based nullinginterferometry for exoplanet science is not a new idea. However,

- Our knowledge about exoplanets has significantly increased with hundreds of terrestrial planets waiting to be discovered
- Tremendous progress was made in several key technologies

nature

Explore content V About the journal V Publish with us V

nature > letters > article

Published: 24 August 1978

Detecting nonsolar planets by spinning infrared interferometer

R. N. BRACEWELL

 Nature
 274, 780–781 (1978)
 Cite this article

 702
 Accesses
 257
 Citations
 48
 Altmetric
 Metrics

Investigating other worlds

- LIFE's wavelength range is chosen to cover the peak of the thermal emission of temperate terrestrial planets
- This wavelength range features absorption bands of major atmospheric constituents including biosignatures such as ozone (O₃), methane (CH₄) and nitrous oxide (N₂O)

Emission spectra of terrestrial planets in our Solar System

Investigating other worlds

- LIFE's wavelength range is chosen to cover the peak of the thermal emission of temperate terrestrial planets
- This wavelength range features absorption bands of major atmospheric constituents including biosignatures such as ozone (O₃), methane (CH₄) and nitrous oxide (N₂0)

Reconstructed LIFE image of Solar System analog at 10 pc

Biosignature detection: the mid-infrared advantage

Many atmospheric biosignatures have absorption bands in the LIFE wavelength range

Schwieterman et al. 2018

LIFE discovery and characterization potential

LIFE discovery space vs. known exoplanets within 10 pc

Quanz et al. 2022 (arXiv2101075000)

Challenges for detecting Earth-like planets with LIFE

LIFE: a candidate theme for a future ESA L-class missions ESA Voyage 2050 - European roadmap for future space exploration

SCIENCE & EXPLORATIO

Voyage 2050 sets sail: ESA chooses future science mission themes

"Therefore, launching a Large mission enabling the characterisation of the **atmosphere of** temperate exoplanets in the mid-infrared should be a top priority for ESA within the Voyage 2050 timeframe."

"Being the first to measure a spectrum of the direct thermal emission of a temperate exoplanet in the mid infrared would be an outstanding breakthrough that could lead to yet again another paradigm-shifting discovery."

ESA Senior Committee Report; June 2021

A holistic understanding of exo-Earths requires global efforts

Synergies between different missions and ground-based telescopes

Take home messages

- Nulling interferometry is a high-spatial resolution, high-contrast observing technique that allows for the direct detection of extrasolar planets
- It is particularly suited for observations at mid-infrared wavelength, where single-aperture telescopes lack spatial resolution and where requirements on phase and amplitude control – despite still being stringent - are more relaxed
- Recent successes of nulling interferometry include the HOSTS survey at the VLTI determining the occurrence rate of (massive) exozodiacal dust disks
- Future applications include the NOTT instrument at the VLTI and the LIFE space mission; as of today, a space-based nulling interferometer is the most promising approach to directly characterize the atmospheres of dozens of temperate, terrestrial exoplanets in the mid-infrared

LARGE INTERFEROMETER FOR EXOPLANETS

Backup

Everything else

LIFE: Exoplanet Detection Yield Estimates

Assuming an initial search phase of the mission of 2.5 years

- Expected detection yields are similar to large future NASA flagship concepts
- Monte Carlo simulations based on Kepler statistics (SAG13) and stars within ~20 pc

2 scenarios:

Maximizing **total number** of planets vs. maximizing **rocky planets in habitable zone**

The vision of the LIFE initiative Understanding our place in the cosmos in the context of exoplanet and planetary science

The LIFE initiative seeks to develop the scientific context, the technology, and a roadmap for an ambitious mid-infrared space mission that investigates the atmospheric properties of a large sample of terrestrial exoplanets - including **30-50 orbiting within the habitable zone** of their host stars.

The LIFE mission will

- Investigate the diversity of planetary bodies
- Assess the habitability of terrestrial exoplanets
- Search for potential biosignatures in exoplanet atmospheres

Quanz et al. 2021 (Experimental Astronomy; 10.1007/s10686-021-09791-z

LIFE: Exoplanet Detection Yield Estimates

Assuming an initial search phase of the mission of 2.5 years

LIFE: Detection Yield Estimates for Rocky Planets in HZ

Dominated by large uncertainties and the need for sensitivity

• M-star planet statistic from SAG13

- FGK-star planet statistic from Bryson et al. 2021
- Throughput assumed to be 5%
- Mirror size:

2m for M-stars 3.5 m for FGK-stars

Obtaining critical planet parameters from single epoch data

Rocky planets in habitable zone can be readily identified during search phase

Dannert et al. A&A 664, A22 (2022)

LIFE discovery space vs. JWST

LIFE discovery space vs. JWST

