Observations of Terrestrial Exoplanet Atmospheres (*including Trappist-1!*)

Natasha Batalha - Sagan Summer School 2023

Previous observations of exoplanets have yielded tremendous chemical diversity

But what about for terrestrial planets only?

								2 He 4.002602 Helium
			5 B 10.811 Boron	6 C 12.0107 Carbon	7 N 14.0067 Nitrogen	8 O 15.9994 Oxygen	9 F 18.9984032 Fluorine	10 Ne 20.1797 Neon
			13 Al 26.9815386 Aluminum	14 Si 28.0855 Silicon	15 P 30.973762 Phosphorus	16 S 32.065 Sulfur	17 CI 35.453 Chlorine	18 Ar ^{39.948} Argon
6934 kel	29 Cu ^{63.546} Copper	30 Zn ^{65.38} Zinc	31 Ga 69.723 Gallium	32 Ge 72.64 Germanium	33 As 74.92160 Arsenic	34 Se 78.96 Selenium	35 Br ^{79.904} Bromine	36 Kr ^{83.798} Krypton
d .42 adium	47 Ag 107.8682 Silver	48 Cd 112.411 Cadmium	49 In 114.818 Indium	50 Sn ^{118.710} Tin	51 Sb 121.760 Antimony	52 Te 127.60 Tellurium	53 126.90447 Iodine	54 Xe 131.293 Xenon
t .084 iinum	79 Au ^{196.966569} Gold	80 Hg 200.59 Mercury	81 TI 204.3833 Thallium	82 Pb ^{207.2} Lead	83 Bi 208.98040 Bismuth	84 Po [209] Polonium	85 At [210] Astatine	86 Rn [222] Radon
0 S 1] mstadtium	111 Rg [280] Roentgenium	112 Cn [285] Copernicium	113 Nh [284] Nihomium	114 Fl [289] Flerovium	115 MC [288] Moscovium	116 Lv ^[293] Livermorium	117 TS [294] Tennessine	118 Og [294] Oganesson
10	44	10	10	- 1	16	10	17	10

But what about for terrestrial planets only?

HENRIC HE

	LA								
	AC								

5 6 7 9 0

ExoAtmospheres

IAC community database for exoplanet atmospheric observations

Frame of reference for spectral feature size of "1xSolar" models

Frame of reference for spectral feature size of "1xSolar" models

Frame of reference for spectral feature size of "1xSolar" models

At high SNR expect to see:

Talk from Mike Line and petitRadTrans hands on activity

"Rule-out" method: Different cloudmetallicity scenarios are ruled out with certain confidence when compared to a flat line

Similar to PICASO hands on activity

Edwards et al. 2020

TRAPPIST-1 System Compared to Our Solar System

https://exoplanets.nasa.gov/resources/2252/trappist-1-exoplanets-solar-system-comparison/

Diamond-Lowe et al. 2018

No detection

Swain et al. 2021

T ~ 800 K

Remember from Laura Kreidberg's talk on Tues!

Kreidberg et al. 2019

+30

-30°

Kreidberg et al. 2019

J Magnitude

J Magnitude

THE NEXT ERA OF EXO-ATMOSPHERE OBSERVATIONS

22.2 NIRSpec Prism hrs: PI N. Lewis/M. Mountain

J Magnitude

J Magnitude

Previous HST/G-B Observations

Present Capabilities with JWST

Emission Geometry

Present Goals with JWST

WE ARE ONLY AT THE INFANCY OF OBSERVATIONS OF TRAPPIST-1 AND OTHER SYSTEMS

Lustig-Yaeger+2019

OBSERVATIONS OF TERRESTRIAL PLANETS

- 1. Null results are still results
- 2. Broad wavelength coverage is needed to robustly interpret spectra
- 3. Reproducible results is key! Multiple reduction methods are needed
- 4. We have many different observational techniques to tackle exoplanets. We should use them all!
- 5. We are at the infancy of terrestrial exoplanet observations

Additional Reading: "Atmospheres of Rocky Exoplanets" Annual Reviews Wordsworth & Kreidberg

Equilibrium Temperature [K] 12000 - 0005 - 0007 - 0

