EXCALIBUR VS The World: A Comparative Analysis of HST-WFC3 Data Reduction Pipelines for Exoplanetary Observations

> Lorenzo V. Mugnai (MugnaiL@cardiff.ac.uk)

Mark R. Swain, Gael M. Roudier, Raissa Estrela

Pic. credits Lorenzo V Mugnai

EXCALIBUR VS The World: A Comparative Analysis of HST-WFC3 Data Reduction Pipelines for Exoplanetary Observations

> Lorenzo V. Mugnai (MugnaiL@cardiff.ac.uk)

Mark R. Swain, Gael M. Roudier, Raissa Estrela

Pic. credits Lorenzo V Mugnai

THE ASTRONOMICAL JOURNAL

Detection of an Atmosphere on a Rocky Exoplanet Mark R. Swain¹, Raissa Estrela^{1,2}, Robert Mest¹, Christophe Sotin¹, Paul B. Rimmer^{3,4,5}, Adriana Valio², Robert West¹, Kyle Pearson¹, Noah Huber-Feely⁶, and Robert T. Zellem¹, Published 2021 April 8 · © 2021. The American Astronomical Society. All rights reserved. The Astronomical Journal, Volume 161, Number 5 Citation Mark R. Swain *et al* 2021 *AJ* 161 213 DOI 10.3847/1538-3881/abe879

THE ASTRONOMICAL JOURNAL

ARES. * V. No Evidence For Molecular Absorption in the HST WFC3 Spectrum of GJ 1132 b

Lorenzo V. Mugnai¹ , Darius Modirrousta-Galian^{2,3} , Billy Edwards⁴ , Quentin Changeat⁴ , Jeroen Bouwman⁵, Giuseppe Morello^{2,6} , Ahmed Al-Refaie⁴ , Robin Baeyens⁷, Michelle Fabienne Bieger⁸ , Doriann Blain⁹ + Show full author list Published 2021 May 26 • © 2021. The American Astronomical Society. All rights reserved. <u>The Astronomical Journal, Volume 161, Number 6</u>

Citation Lorenzo V. Mugnai et al 2021 AJ 161 284

DOI 10.3847/1538-3881/abf3c3

THE ASTRONOMICAL JOURNAL

Detection of an Atmosphere on a Rocky Exoplanet Mark R. Swain¹, Raissa Estrela^{1,2}, Robert Mest¹, Christophe Sotin¹, Paul B. Rimmer^{3,4,5}, Adriana Valio², Robert West¹, Kyle Pearson¹, Noah Huber-Feely⁶, and Robert T. Zellem¹, Published 2021 April 8 · © 2021. The American Astronomical Society. All rights reserved. The Astronomical Journal, Volume 161, Number 5 Citation Mark R. Swain *et al* 2021 *AJ* 161 213 DOI 10.3847/1538-3881/abe879

THE ASTRONOMICAL JOURNAL

ARES.^{*}V. No Evidence For Molecular Absorption in the HST WFC3 Spectrum of GJ 1132 b

Lorenzo V. Mugnai¹ , Darius Modirrousta-Galian^{2,3} , Billy Edwards⁴ , Quentin Changeat⁴ , Jeroen Bouwman⁵, Giuseppe Morello^{2,6} , Ahmed Al-Refaie⁴ , Robin Baeyens⁷, Michelle Fabienne Bieger⁸ , Doriann Blain⁹ + Show full author list Published 2021 May 26 • © 2021. The American Astronomical Society. All rights reserved. The Astronomical Journal, Volume 161, Number 6

Citation Lorenzo V. Mugnai et al 2021 AJ 161 284

EXCALIBUR Workshop

There are offsets in the spectral mean values

THE ASTRONOMICAL JOURNAL

Detection of an Atmosphere on a Rocky Exoplanet Mark R. Swain¹, Raissa Estrela^{1,2}, Gael M. Roudier¹, Christophe Sotin¹, Paul B. Rimmer^{3,4,5}, Adriana Valio², Robert West¹, Kyle Pearson¹, Noah Huber-Feely⁶, and Robert T. Zellem¹, Published 2021 April 8 · © 2021. The American Astronomical Society. All rights reserved. The Astronomical Journal, Volume 161, Number 5 Citation Mark R. Swain *et al* 2021 *AJ* 161 213 DOI 10.3847/1538-3881/abe879

THE ASTRONOMICAL JOURNAL

ARES. * V. No Evidence For Molecular Absorption in the HST WFC3 Spectrum of GJ 1132 b

Lorenzo V. Mugnai¹ , Darius Modirrousta-Galian^{2,3} , Billy Edwards⁴ , Quentin Changeat⁴ , Jeroen Bouwman⁵, Giuseppe Morello^{2,6} , Ahmed Al-Refaie⁴ , Robin Baeyens⁷, Michelle Fabienne Bieger⁸ , Doriann Blain⁹ + Show full author list Published 2021 May 26 · © 2021. The American Astronomical Society. All rights reserved. <u>The Astronomical Journal, Volume 161, Number 6</u>

Citation Lorenzo V. Mugnai et al 2021 AJ 161 284

Libby-Roberts et al. 2022

THE ASTRONOMICAL JOURNAL

Detection of an Atmosphere on a Rocky Exoplanet Mark R. Swain¹ , Raissa Estrela^{1,2} , Acian a Valio² , Robert Mest¹ , Kyle Pearson¹ , Noah Huber-Feely⁶ , and Robert T. Zellem¹ , Adriana Valio² , Robert West¹ , Kyle Pearson¹ , Noah Huber-Feely⁶ , and Robert T. Zellem¹ Published 2021 April 8 · © 2021. The American Astronomical Society. All rights reserved. The Astronomical Journal, Volume 161, Number 5 Citation Mark R. Swain *et al* 2021 *AJ* 161 213 DOI 10.3847/1538-3881 (abe879

THE ASTRONOMICAL JOURNAL

ARES. * V. No Evidence For Molecular Absorption in the HST WFC3 Spectrum of GJ 1132 b

Lorenzo V. Mugnai¹ , Darius Modirrousta-Galian^{2,3} , Billy Edwards⁴ , Quentin Changeat⁴ , Jeroen Bouwman⁵, Giuseppe Morello^{2,6} , Ahmed Al-Refaie⁴ , Robin Baeyens⁷, Michelle Fabienne Bieger⁸ , Doriann Blain⁹ + Show full author list Published 2021 May 26 • © 2021. The American Astronomical Society. All rights reserved. <u>The Astronomical Journal, Volume 161, Number 6</u>

Citation Lorenzo V. Mugnai et al 2021 AJ 161 284

Katherine Bennet's poster

The other pipelines

- Iraclis (Tsiaras et al. 2016):
 - starts from RAW data;
 - executes multiple corrective and calibrative steps, culminating in the extraction of flux from spatially scanned images to produce transit light curves;
 - applies Kreidberg's divide-white method for spectral light curve fitting and normalization.
- CASCADe (Carone et al. 2021):
 - starts with the "ima" intermediate data product from the CALWFC3 pipeline, skipping direct data calibration;
 - implements a data-driven method enhancing data reduction accuracy by leveraging causal connections within the dataset;
 - completely automatic.

Populations from the literature

Exoplanets observations with HST-WFC3

- Tsiaras et al. 2018: transmission spectra for 30 gasseos exoplanets processed with Iraclis pipeline;
- Roudier et al. 2021: spectra for 62 exoplanets, processed with EXCALIBUR pipeline;
- This work: **22** transmission spectra obtained with the automatic CASCADe pipeline. Roudier et al. 2021 system parameters used as inputs.

Intersections in the data sets

- Intersections are exoplanets observations (same dataset) that have been analyzed with different pipelines.
- 22 HST-WFC3 observation analyzed with all the pipelines.
- Other **8** datasets processed with both EXCALIBUR and Iraclis.

In the figure are reported all the spectra used for this work.

- offsets in the data set (mean values)
- Claimed precision (error bars)
- Spectral shapes (channel values)

In the figure are reported all the spectra used for this work.

- offsets in the data set (mean values)
- claimed precision (error bars)
- spectral shapes (channel values)

In the figure are reported all the spectra used for this work.

- offsets in the data set (mean values)
- claimed precision (error bars)
- spectral shapes (channel values)

In the figure are reported all the spectra used for this work.

- offsets in the data set (mean values)
- claimed precision (error bars)
- spectral shapes (channel values)

Mean values ratio $\frac{\widehat{S_{A,\lambda}}}{\widehat{S_{B,\lambda}}}$

Excalibur's ratio of the mean values is compatible with 1.

There is not a preference bias toward bigger or smaller radii.

Uncertainties ratio $\frac{\sigma_{A,\lambda}}{\sigma_{B,\lambda}}$

Spectral bin comparison $\frac{S_{A,\lambda}-S_{B,\lambda}}{\max[\sigma_{A,\lambda},\sigma_{B,\lambda}]}$

Spectral values are **averagely compatible** with Iraclis and Cascade, but the distribution is twice what expected.

Spectral bin comparison $\frac{S_{A,\lambda}-S_{B,\lambda}}{\max[\sigma_{A,\lambda},\sigma_{B,\lambda}]}$

Spectral values are **averagely compatible** with Iraclis and Cascade, but the distribution is twice what expected.

This is true for every pipeline.

- Differences in resulting spectra is a known problem that affects all the pipelines and it is under investigation (drop me an email if curious).
- From a population prospective, EXCALIBUR shows
 - no obvious bias for planetary radius
 - uncertainties \sim 20% smaller than other pipelines
- This is only a small part of a bigger work: publication is under preparation (stay tuned).

Thank you

Lorenzo V. Mugnai (MugnaiL@cardiff.ac.uk)

Pic. credits Lorenzo V Mugna