Secondary eclipses and phase curves

Laura Kreidberg Max Planck Institute for Astronomy

The APEx Department

Atmospheric Physics of Exoplanets

- New department at the Max Planck Institute of Astronomy in Heidelberg, Germany
- Focus is observations, theory, and instrumentation for exoplanet atmospheres!
- Advertisement: we are hiring at all levels! Jobs are advertised in the fall on the AAS job register

What is a secondary eclipse?

Thermal emission and reflected light from the planet are blocked during secondary eclipse

Reveals average spectrum of the dayside hemisphere

The first detections of thermal emission Deming et al. 2005, Charbonneau et al. 2005

Laura Kreidberg | MPIA | Sagan Workshop 2023 | Eclipses and Phase Curves

Intro to thermal emission — blackbody approximation

- Luminosity L ~ T^4
- Wavelength of peak emission IS $\lambda_{ ext{peak}}$ \overline{T}

where b = 3000 micron*Kelvin

credit: <u>sun.org</u>

Key facilities

Atmosphere characterisation is easier when Earth's atmosphere is not in the way! ** note: ground-based observations are also important and complementary

Spitzer Space Telescope Launch date: 2003 85 cm mirror Infrared; 3.6 - 160 micron

Hubble Space Telescope Launch date: 1990 2.4 m mirror UV-near-IR: 0.1 - 1.7 micron

JWST Launch date: 2021 6.5 m mirror Optical - IR: 0.6 - 30 micron

Typical thermal emission signal

Hot Jupiter orbiting a Sun-like star: Tp = 1500, Ts =5000, Rp/Rs = 0.01

Warm rocky planet orbiting an M-dwarf:

Tp = 400, Ts = 3000,Rp/Rs = 0.01

(111)	1000	
-סרמו ווחע לאף	100	
	10	
	1	

Wavelength

Wavelength

Temperature

Credit: Tom Mikal-Evans

Wavelength

Wavelength

Wavelength

Temperature

Credit: Tom Mikal-Evans

Wavelength

Intro to phase curves

Animation available at github.com/lkreidberg

- Observe a complete orbital revolution
- Changing viewing angle reveals different regions of the atmosphere over time
- Can map the global climate and chemical composition!

A new frontier: eclipse mapping!

More on this from Emily Rauscher on Thursday!

During ingress and egress, the visible disk of the planet changes incrementally

De Wit et al. 2012

Science from eclipses and phase curves

- How is heat recirculated in the atmosphere?
- What is the temperature structure? Are there thermal inversions?
- How do chemical composition and clouds vary as a function of longitude?
- What is the atmospheric metallicity?
- Is an atmosphere present?

Showman & Guillot 2002

How is heat circulated in the atmosphere? The first thermal phase curve, HD 189733b – Knutson et al. 2007

Peak brightness 16 +/- 6 degrees of the substellar point, day-night temp contrast ~ 240 K

Laura Kreidberg | MPIA | Sagan Workshop 2023 | Eclipses and Phase Curves

How is heat circulated in the atmosphere? Hotter planets have larger day-night temperature contrast


```
	au_{
m drag} \!=\! \infty
\tau_{\rm drag}\!=\!10^7\;{\rm sec}
\tau_{\rm drag}\!=\!10^6\;{\rm sec}
\tau_{\rm drag}\!=\!10^5~{\rm sec}
\tau_{\rm drag}\!=\!10^4\;{\rm sec}
\tau_{\rm drag}\!=\!10^3~{\rm sec}
 3.6 \mu m
 4.5\mu m
 8 \mu m
 24 \mu m
 WFC3
Band–Averaged
```

This trend is due to the decreasing ability with increasing incident stellar flux of waves to propagate from day to night and erase temperature differences.

How is heat circulated in the atmosphere? A sharp rise in brightness at 1730 K

Onset of magnetic drag? and/or the rapid dissipation of day side clouds?

Deming et al. 2023

Laura Kreidberg | MPIA | Sagan Workshop 2023 | Eclipses and Phase Curves

How does the temperature change with altitude? Inversions increase in strength with increasing irradiation

Mansfield et al. 2021

Laura Kreidberg | MPIA | Sagan Workshop 2023 | Eclipses and Phase Curves

How does chemistry and cloud coverage change with longitude? **Evidence for nightside clouds**

Laura Kreidberg | MPIA | Sagan Workshop 2023 | Eclipses and Phase Curves

Ask me later about WASP-43b!

Uniform nightside temperature, possibly due to clouds (or the relatively long radiative timescale on the nightside)

Keating et al. 2019, Beatty et al. 2019, Parmentier et al. 2021

How does chemistry and cloud coverage change with longitude? Sometimes we see clouds on the dayside!

Total = Symmetric Reflection + Asymmetric Reflection + Thermal Emission

Laura Kreidberg | MPIA | Sagan Workshop 2023 | Eclipses and Phase Curves

Evidence for reflective clouds west of the substellar point for Kepler-7b

Hu et al. 2015

(see also Demory et al. 2013, Parmentier et al. 2016)

What is the atmospheric metallicity?

Gas giants show a diversity of compositions

Hot Saturn HD 149026b has approximately ~100x solar metallicity

- Bean et al. 2023

J

Hot Jupiter WASP-77A b has a subsolar metallicity

- August et al. 2023

Sub-Neptune GJ 1214b has a ~100 -1000x solar metallicity atmosphere

Kempton et al. 2023

Do rocky planets have atmospheres? Thick atmospheres transport heat to the nightside

TRAPPIST-1c

Thick atmosphere -> full heat redistribution -> 340 K

Bare rock —> no heat redistribution —> 430 K

First results indicate that rocky planets do not have thick atmospheres

LHS 3844b-Kreidberg et al. 2019

More on this from Natasha Batalha on Thursday!

1500

TRAPPIST-1c — Greene et al. 2023 TRAPPIST-1b — Zieba et al. 2023

											PhaseC	NIRISS.SOSS
	ots more to come!									LTT-9779	PhaseC	NIRISS.SOSS
	3 phase curve, 90 eclipses in										PhaseC	NIRSPEC.BOTS+G39
23 1											PhaseC	MIRI.LRS
											PhaseC	NIRSPEC.BOTS+G39
JW	ST Cyc	les '	1 –	2						GJ1214	PhaseC	MIRI.LRS
										HD-80606	PhaseC	MIRI.LRS
		т								NGTS-10	PhaseC	NIRSPEC.BOTS+PRI
L L-231-32 Eclipse	MIRI.F1500W									V2 141	DhacaC	MIDLIDC
L L-231-32 Eclipse	MIRI.F1500W	L TRAPPIST-1	Eclipse	MIRI.F1280W	L TRAPPIST-1	Eclipse	1 TRAPPIST-1	Eclipse	MIRI.F1500W	KZ-141	Phasec	IVIIRI.LRS
L L-231-32 Eclipse	MIRI.F1500W	L TRAPPIST-1	Eclipse	MIRI.F1280W	L TRAPPIST-1	Eclipse	1 TRAPPIST-1	Eclipse	MIRI.F1500W	HD-80606	PhaseC	NIRSPEC BOTS+G30
TOI-824 Eclipse	NIRSPEC.BOTS+G395H	I TRAPPIST-1	Eclipse	MIRLF1280W	L TRAPPIST-1	Eclipse	1 TRAPPISI-1	Eclipse	MIRI.F1500W	110-00000	rnasee	NINSPEC.DO151055
TOI-824 Eclipse	NIRSPEC.BOTS+G395H	L TRAPPIST-1	Eclipse	MIRI.F1280W	L LTT1445A	Eclipse	1 LTT1445A	Eclipse	MIRI.LRS	KEPLER-51	PhaseC	NIRSPEC BOTS+PRI
L HAT-P-11 Eclipse	NIRSPEC.BOTS+G395H	L TRAPPIST-1	Eclipse	MIRI.F1280W	L LTT1445A	Eclipse	1 LTT1445A	Eclipse	MIRI.LRS		. mase e	
L HAT-P-11 Eclipse	NIRSPEC.BOTS+G395H	L HAT-P-26	Eclipse	NIRSPEC.BOTS+G395H	L LTT1445A	Eclipse	1 LTT1445A	Eclipse	MIRI.LRS	TOI-849	PhaseC	NIRSPEC.BOTS+PRI
		L HAT-P-26	Eclipse	NIRSPEC.BOTS+G395H	L WASP-121	Eclipse	1 WASP-121	Eclipse	MIRI.LRS			
1 WASP-80 Eclipse		L HAT-P-26	Eclipse		L WASP-47	Eclipse	1 WASP-47	Eclipse	NIRSPEC.BOTS+G395H	TOI-849	PhaseC	NIRSPEC.BOTS+PRI
1 GJ-436 Eclipse	MIRI.LRS	L WASP-17	Eclipse	NIRSPEC.BOTS+G395H	L WASP-47	Eclipse	1 WASP-47	Eclipse	MIRI F1500W		Dharac	
1 GJ-436 Eclipse	MIRI.LRS	L WASP-17	Eclipse	MIRI.LRS	L GJ-3473	Eclipse	1 GJ-3473	Eclipse	MIRI.F1500W	101-849	PhaseC	NIKSPEC.BUIS+PRI
1 TRAPPIST-1 Eclipse	MIRI.F1500W	L WASP-18	Eclipse	NIRISS.SOSS	L GJ-3473	Eclipse	1 GJ-3473	Eclipse	MIRI.F1500W	TOL 2100	DhacoC	
1 TRAPPIST-1 Eclipse	MIRI.F1500W	L GL486	Eclipse	MIRI.LRS	L GJ-3473	Eclipse	1 GJ-3473	Eclipse	MIRI.F1500W	101-2109	Phasec	NIRSPEC. DUIS+055
1 TRAPPIST-1 Eclipse	MIRI.F1500W	L GL486	Eclipse	MIRI.LRS	L GJ-357	Eclipse	1 GJ-357	Eclipse	MIRI.F1500W	TOI-2109	Phase	NIRSPEC BOTS+G30
1 TRAPPIST-1 Eclipse	MIRI.F1500W	L LHS-3844	Eclipse	MIRI.LRS	L HD-260655	Eclipse	1 HD-260655	Eclipse	MIRI.F1500W	101-2103	Flidsec	NINJFLC.DOTJ+033
1 HD-189733 Eclipse	NIRCAM GRISMR+F444W	L LHS-3844	Eclipse	MIRLERS	L HD-260655	Eclipse	1 HD-260655	Eclipse	MIRI.F1500W	TOI-2109	PhaseC	NIRSPEC BOTS+G39
1 WASP-80 Eclipse	NIRCAM.GRISMR+F322W2	L RHO01-CNC	Eclipse	NIRCAM.GRISMR+F444W	L L-98-59	Eclipse	1 1 45-1140	Eclipse	MIRI F1500W	101 2105	Thasee	
1 WASP-80 Eclipse	NIRCAM.GRISMR+F444W	L RHO01-CNC	Eclipse	MIRI.LRS	L LHS-1140	Eclipse	1 LHS-1140	Eclipse	MIRI.F1500W	TRAPPIST-1	PhaseC	MIRI.F1500W
1 WASP-69 Eclipse	NIRCAM.GRISMR+F322W2	L HD-189733	Eclipse	MIRI.LRS	L LHS-1140	Eclipse	1 LHS-1140	Eclipse	MIRI.F1500W			
1 WASP-69 Eclipse	NIRCAM.GRISMR+F444W	L HD-189733	Eclipse	MIRI.LRS	L LHS-1478	Eclipse	1 LHS-1478	Eclipse	MIRI.F1500W	TRAPPIST-1	PhaseC	MIRI.F1500W
1 GJ-436 Eclipse	NIRCAM.GRISMR+F322W2	L HD-189733	Eclipse	MIRI.LRS	L LHS-1478	Eclipse	1 LHS-1478	Eclipse	MIRI.F1500W			
1 GJ-436 Eclipse	NIRCAM.GRISMR+F444W	L 55CNC	Eclipse	NIRCAM.GRISMR+F444W	L LTT-3780	Eclipse	1 LTT-3780	Eclipse	MIRI.F1500W	LTT9779	PhaseC	NIRSPEC.BOTS+G39
1 GJ-436-Offset Eclipse	NIRCAW.GRISWR+F322W2		Eclipse	NIRCAW GRISMR+F444W	L LTT-3780	Eclipse	1 LTT-3780	Eclipse	MIRI.F1500W		51 0	
1 GJ-436 Eclipse	NIRCAM.GRISMR+F322W2	L 55CNC	Eclipse	NIRCAM.GRISMR+F444W	I TOI-1468	Eclipse	1 TOI-1468	Eclipse	MIRI F1500W	KEPLER-86	PhaseC	NIRSPEC.BOTS+PRI
1 GJ-436 Eclipse	NIRCAM.GRISMR+F444W	L 55CNC	Eclipse	NIRCAM.GRISMR+F444W	L TOI-1468	Eclipse	1 TOI-1468	Eclipse	MIRI.F1500W		DhaseC	
1 WASP-52 Eclipse	NIRSPEC.BOTS+PRISM						ennen - Ennen Settien and S. E. E. Annen	e - entre martina - des filosofis des sociais		101-1682	PhaseC	NIKSPEC.BUIS+G35
1 HD189733 Eclipse	NIRCAM.GRISMR+F322W2										DhacoC	NIDEDEC DOTE CO
1 WASP-19 Eclipse	NIRSPEC.BOTS+PRISM									101-201	Fliasec	NINSPEC. DUIS+035
1 WASP-77A Eclipse	NIRSPEC.BOTS+G395H	2								1453811	PhaseC	NIRSDEC BOTS+C20
1 GJ1132 Eclipse		<u></u>								LI155044	rhasec	MINSFEC. DUISTUS

