Looking Through (and Understanding) Clouds and Hazes with JWST (and other things)

Peter Gao | Carnegie EPL | @PlanetaryGao
Sagan Summer Workshop 2023 | #sagan2023 | July 27th, 2023
Clouds and Hazes are Fundamental Components of Planetary Atmospheres

Radiation

Chemistry

Dynamics

Atmospheric Escape

Atmosphere/Interior Interactions
What Are Exoplanet Clouds and Hazes Like?
Equilibrium chemistry predicts a diverse set of condensates with temperature
How do cloud particles form?

- Homogeneous Nucleation
- Heterogeneous Nucleation
Cloud formation can be inhibited by the nucleation barrier

\[J \propto e^{f(\sigma^3)} \]

\(\sigma_{\text{TiO}_2} \sim 500 \text{ ergs cm}^{-2} \)
\(\sigma_{\text{For}} \sim 436 \text{ ergs cm}^{-2} \)
\(\sigma_{\text{Cor}} \sim 690 \text{ ergs cm}^{-2} \)
\(\sigma_{\text{Fe}} \sim 1850 \text{ ergs cm}^{-2} \)
\(\sigma_{\text{Cr}} \sim 1800 \text{ ergs cm}^{-2} \)
\(\sigma_{\text{MnS}} \sim 2300 \text{ ergs cm}^{-2} \)
\(\sigma_{\text{KCl}} \sim 150 \text{ ergs cm}^{-2} \)

Gao+2020
Photochemical haze production is likely tied to abundance of simple “haze precursors”

Haze forms when CH$_4$ becomes dominant?

(Not necessarily)

Morley+2015

Lower UV

Lower CH$_4$

Elsie Lee
Laboratory experiments shed light on complexities of haze formation and composition.
Laboratory experiments shed light on complexities of haze formation and composition

Moran+2020
Optical properties depend on size, composition, shape and impact the large scale thermal structure of exoplanets.

- $R = 1$ micron
- $R = 0.1$ micron

Spectral features

"Mie wiggles"

Decrease in extinction with increasing wavelength
Cloud particle size distributions (and shapes) can be complex.

Potential Exponential
Lognormal
Bins (cloud)
Bins (haze)

Gao+2021
Clouds and hazes are complicated
How do Clouds and Hazes Impact Exoplanet Atmospheres and Observations?
Global Scale ($T \sim \text{hours} - \text{days}$):

- Phase curve
- Energy balance
- Dynamics
- Gas composition (e.g. rain out)

Effects of exoplanet clouds and hazes range from global to local scales.
Effects of exoplanet clouds and hazes range from global to local scales.

Column Scale (T ~ hours – days):
- Transmission spectra
- Emission/reflection spectra
- Thermal structure
Effects of exoplanet clouds and hazes range from global to local scales

Local Scale (T ~ minutes – hours):

- Coagulation
- Particle distribution
Effects of exoplanet clouds and hazes range from global to local scales.

Particle Scale (T ~ seconds):
- Condensation/chemistry
- Composition
- Shape
- Optical properties
Insert image of inhomogeneous clouds on gas giants.
Heating by clouds/hazes creates inversion

Cooling due to cloud/haze scattering

Clear
Not Clear
Clouds and Hazes impact exoplanet atmospheres across a wide range of spatial and temporal scales.
How Do We Better Understand Clouds and Hazes?
Task 1: Look at Cloudy/Hazy-ness on a population level

Formation & sinking of silicate clouds

Formation of photochemical hazes

1.4 μm Water Band Amplitude (H)

Equilibrium Temperature (K)

Gravity (cm s⁻²)

G20 (g = 10 m s⁻²)

CK17 (modified)
Task 1: Look at Cloudy/Hazy-ness on a population level

Gao+Powell 2021

Parmentier+2016, 2021
Tholins

KCl

Na_2S

Mg_2SiO_4

$\text{Fe}_{\text{Al}}$$_2O_3

Task 2: Look for the spectral finger-prints of clouds and hazes

Updated laboratory measurements of optical constants needed
Task 3: Look for the lack of condensation
Task 3: Look for the lack of condensation
Task 4: More lab work!

<table>
<thead>
<tr>
<th>Plasma</th>
<th>100x</th>
<th>1,000x</th>
<th>10,000x</th>
</tr>
</thead>
<tbody>
<tr>
<td>600 K</td>
<td>$\theta \approx 78^\circ \pm 2^\circ$</td>
<td>$\theta \approx 45^\circ \pm 1^\circ$</td>
<td>$\theta \approx 82^\circ \pm 5^\circ$</td>
</tr>
<tr>
<td>400 K</td>
<td>$\theta \approx 103^\circ \pm 4^\circ$</td>
<td>$\theta \approx 65^\circ \pm 1^\circ$</td>
<td>$\theta \approx 92^\circ \pm 2^\circ$</td>
</tr>
<tr>
<td>300 K</td>
<td>$\theta \approx 87^\circ \pm 1^\circ$</td>
<td>$\theta \approx 33^\circ \pm 3^\circ$</td>
<td>$\theta \approx 85^\circ \pm 3^\circ$</td>
</tr>
</tbody>
</table>
Looking through clouds and hazes is not an option: Their impacts on planetary atmospheres are unavoidable

Understanding clouds and hazes requires a combination of observational, theoretical, and experimental efforts – every bit helps!

Review papers:

Helling 2019: https://ui.adsabs.harvard.edu/abs/2019AREPS..47..583H/abstract

Gao+2021: https://ui.adsabs.harvard.edu/abs/2021JGRE..12606655G/abstract