Looking Through (and Understanding) Clouds and Hazes with JWST (and other things)

Peter Gao | Carnegie EPL | @PlanetaryGao Sagan Summer Workshop 2023 | #sagan2023 | July 27th, 2023

Clouds and Hazes are Fundamental Components of Planetary Atmospheres

What Are Exoplanet Clouds and Hazes Like?

Equilibrium chemistry predicts a diverse set of condensates with temperature

How do cloud particles form?

Cloud formation can be inhibited by the nucleation barrier

Photochemical haze production is likely tied to abundance of simple "haze precursors"

Laboratory experiments shed light on complexities of haze formation and composition

Laboratory experiments shed light on complexities of haze formation and composition Moran+2020

Optical properties depends on size, composition, shape and impact the large scale thermal structure of exoplanets

Cloud particle size distributions (and shapes) can be complex

Clouds and hazes are complicated

How do Clouds and Hazes Impact Exoplanet Atmospheres and Observations?

Transmission

Effects of exoplanet clouds and hazes range from global to local scales

<u>Global Scale (T ~ hours - days):</u>

Phase curve Energy balance Dynamics Gas composition (e.g. rain out)

<u>Column Scale (T ~ hours - days):</u>

Transmission spectra Emission/reflection spectra Thermal structure Effects of exoplanet clouds and hazes range from global to local scales

Local Scale (T ~ minutes – hours):

Coagulation Particle distribution

Clouds and Hazes impact exoplanet atmospheres across a wide range of spatial and temporal scales

How Do We Better Understand Clouds and Hazes?

Task 1: Look at Cloudy/Hazy-ness on a population level

Gao+2021

Parmentier+2016, 2021

Lepler AT.P.

Kepler 12 b

Kepler-A1D

Kepter Person

Task 1: Look at Cloudy/Hazy-ness on a population level

Task 2: Look for the spectral finger-prints of clouds and hazes **Updated laboratory** measurements of optical constants needed

EXOPLANET VHS 1256 b EMISSION SPECTRUM

Task 3: Look for the lack of condensation

Lothringer+2020

Task 3: Look for the lack of condensation

Task 4: More lab work!

Yu+2021

Plasma	100×	1,000×	10,000×
600 K	$\theta \approx 78^{\circ} \pm 2^{\circ}$	$\theta \approx 45^{\circ} \pm 1^{\circ}$	$\theta \approx 82^{\circ} \pm 5^{\circ}$
400 K	$\theta \approx 103^{\circ} \pm 4^{\circ}$	$\theta \approx 65^{\circ} \pm 1^{\circ}$	$\theta \approx 92^{\circ} \pm 2^{\circ}$
300 K	$\theta \approx 87^{\circ} \pm 1^{\circ}$	$\theta \approx 33^\circ \pm 3^\circ$	$\theta \approx 85^{\circ} \pm 3^{\circ}$

Takeaways

Looking through clouds and hazes is not an option: Their impacts on planetary atmospheres are unavoidable

Understanding clouds and hazes requires a combination of **observational**, **theoretical**, and **experimental** efforts – every bit helps!

Review papers:

Marley+2013: https://ui.adsabs.harvard.edu/abs/2013cctp.book..367M/abstract

Helling 2019: https://ui.adsabs.harvard.edu/abs/2019AREPS..47..583H/abstract

Gao+2021: https://ui.adsabs.harvard.edu/abs/2021JGRE..12606655G/abstract