
Handy Fitting One Page “Cheat Sheet”

Fitting data with scipy.optimize.curve fit is a good approach when you have noisy measurements of
a quantity (call it y) at times or positions x, and a model that gives y as a function of x and some other
parameters. For example, letting x = t, the height of a ball is

y(t, y0, v0, a) = y0 + v0t+
1

2
at2. (1)

If I have such a model, I can first define my function as a model with x or t as the first argument, e.g.

def model(t, y0, v0, a):

return y0 + v0*t + 0.5*a*t**2

If I then have:

1. An array of measured values y

2. An array of measurement times/positions t

3. An array of uncertainties uncertainty on my measurements y

I can get the best-fit parameters and their uncertainties using

import numpy as np

from scipy import optimize

bestpar, covariance = optimize.curve fit(model, t, y, sigma=uncertainty)

bestpar uncertainty = np.sqrt(np.diag(covariance))

There are a couple more arguments to curve fit that you might find useful:

• p0=[par1guess, par2guess, ...] Use this to supply initial guesses for your parameter values. You
usually won’t need this.

• absolute sigma Set this to True to tell curve fit to trust your measurement uncertainties. Setting
this to True will not change your best-fit parameters, but it will change the uncertainties on your
best-fit parameters.

Sometimes you might like to fit a model with more than one independent variable, for example

y(t, x, y0, v0, a, γ) = y0 + v0t+
1

2
at2 + γx (2)

with independent variables x and t. In this case, you can use

def model(ind vars, y0, v0, a, gamma):

t, x = ind vars

return y0 + v0*t + 0.5*a*t**2 + gamma*x

and call curve fit with

bestpar, covariance = optimize.curve fit(model, [t, x], y, sigma=uncertainty)

There is certainly more to curve fit, and to fitting a model in general, than we have discussed here. You’ll
probably see some of it in a statistics class if you take one. The brief summary above, though, will hopefully
be useful to you in lab classes here and beyond.

