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~ 5000 exoplanets detected so far 
Wide diversity of methods 

Raise many questions!

 EXOPLANETS: where do we stand?
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Fig. 7.— Top: Completeness-corrected histogram of planet radii for planets with orbital periods shorter than 100 days. Uncertainties
in the bin amplitudes are calculated using the suite of simulated surveys described in Section C. The light gray region of the histogram for
radii smaller than 1.14 R� suffers from low completeness. The histogram plotted in the dotted grey line is the same distribution of planet
radii uncorrected for completeness. The median radius uncertainty is plotted in the upper right portion of the plot. Bottom: Same as top
panel with the best-fit spline model over-plotted in the solid dark red line. The region of the histogram plotted in light grey is not included
in the fit due to low completeness. Lightly shaded regions encompass our definitions of “super-Earths” (light red) and “sub-Neptunes”
(light cyan). The dashed cyan line is a plausible model for the underlying occurrence distribution after removing the smearing caused by
uncertainties on the planet radii measurements. The cyan circles on the dashed cyan line mark the node positions and values from the
spline fit described in §4.3.
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~ 5000 exoplanets detected so far 
Wide diversity of methods 

Raise many questions!

Desert: 
Observational gap

Lack of continuum 

Fulton gap

8 Fulton et al.

Fig. 7.— Top: Completeness-corrected histogram of planet radii for planets with orbital periods shorter than 100 days. Uncertainties
in the bin amplitudes are calculated using the suite of simulated surveys described in Section C. The light gray region of the histogram for
radii smaller than 1.14 R� suffers from low completeness. The histogram plotted in the dotted grey line is the same distribution of planet
radii uncorrected for completeness. The median radius uncertainty is plotted in the upper right portion of the plot. Bottom: Same as top
panel with the best-fit spline model over-plotted in the solid dark red line. The region of the histogram plotted in light grey is not included
in the fit due to low completeness. Lightly shaded regions encompass our definitions of “super-Earths” (light red) and “sub-Neptunes”
(light cyan). The dashed cyan line is a plausible model for the underlying occurrence distribution after removing the smearing caused by
uncertainties on the planet radii measurements. The cyan circles on the dashed cyan line mark the node positions and values from the
spline fit described in §4.3.
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• Nature of the planets? 
➔ Composition, size…

• Formation? 
➔ Place of birth, migration…

• Is our solar system unique? 
➔ Need to probe many systems!

• « Habitability »? 
➔ Distance to the star 
(temperature), tectonic…

 Several problematics
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→ Knowing Rp depends on R★

Transit method

CHEOPS TESS

PLATO

 Indirect detection methods
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Direct imaging

A&A proofs: manuscript no. PDS70

Table 1. Stellar parameters of PDS 70.

Parameter Unit Value References
Distance pc 113.43±0.52 1
Te↵ K 3972±36 2
Radius R� 1.26±0.15 computed from 2
B mag 13.494±0.146 3
V mag 12.233±0.123 3
g0 mag 12.881±0.136 3
r0 mag 11.696±0.106 3
i0 mag 11.129±0.079 3
J mag 9.553±0.024 4
H mag 8.823±0.040 4
Ks mag 8.542±0.023 4
Age Myr 5.4±1.0 this work
Mass M� 0.76±0.02 this work
AV mag 0.05+0.05

�0.03 this work

References. (1) Gaia Collaboration et al. (2016, 2018); (2) Pecaut &
Mamajek (2016); (3) Henden et al. (2015); (4) Cutri et al. (2003).

fit as well as the independently determined e↵ective temperature
Te↵ and radius are listed in Table 1. We perform a simultaneous
fit of all these observables. The uncertainties are treated as Gaus-
sians and we assume no covariance between them.
We use a Gaussian prior from Gaia for the distance and a Gaus-
sian prior with mean 0.01 mag and sigma 0.07 mag, truncated at
AV=0 mag, for the extinction (Pecaut & Mamajek 2016). Given
AV , we compute the extinction in all the adopted bands by as-
suming a Cardelli et al. (1989) extinction law. We use a Chabrier
(2003) initial mass function (IMF) prior on the mass and a uni-
form prior on the age. The stellar models adopted to compute
the expected observables, given the fit parameters, are from the
MIST project (Paxton et al. 2011, 2013, 2015; Dotter 2016; Choi
et al. 2016). These models were extensively tested against young
cluster data, as well as against pre-main sequence stars in mul-
tiple system, with measured dynamical masses, and compared
to other stellar evolutionary models (see Choi et al. (2016) for
details). The result of the fit constrains the age of PDS 70 to
5.4 ± 1.0 Myr and its mass to 0.76 ± 0.02 M�. The best fit pa-
rameter values are given by the 50% quantile (the median) and
their uncertainties are based on the 16% and 84% quantile of the
marginalized posterior probability distribution. The stellar pa-
rameters are identical to the values used by Keppler et al. (2018).

3. Observations and data reduction

3.1. Observations

We observed PDS 70 during the SPHERE/SHINE GTO program
on the night of February 24th, 2018. The data were taken in the
IRDIFS-EXT pupil tracking mode using the N_ALC_YJH_S
(185 mas in diameter) apodized-Lyot coronagraph (Martinez
et al. 2009; Carbillet et al. 2011). We used the IRDIS (Dohlen
et al. 2008) dual-band imaging camera (Vigan et al. 2010) with
the K1K2 narrow-band filter pair (�K1 = 2.110 ± 0.102 µm, �K2

= 2.251 ± 0.109 µm). A spectrum covering the spectral range
from Y to H-band (0.96–1.64 µm, R� = 30) was acquired simul-
taneously with the IFS integral field spectrograph (Claudi et al.

straints the allowed distance values. As a result, the best fit distance
value reported here from the MCMC posterior draws is identical to the
value provided by the Gaia collaboration.

2008). We set the integration time for both detectors to 96 s and
acquired a total time on target of almost 2.5 hours. The total field
rotation is 95.7�. During the course of observation the average
coherence time was 7.7 ms and a Strehl ratio of 73% was mea-
sured at 1.6 µm, providing excellent observing conditions.

3.2. Data reduction

The IRDIS data were reduced as described in Keppler et al.
(2018). The basic reduction steps consisted of bad-pixel correc-
tion, flat fielding, sky subtraction, distortion correction (Maire
et al. 2016), and frame registration.
The IFS data were reduced with the SPHERE Data Center
pipeline (Delorme et al. 2017), which uses the Data Reduction
and Handling software (v0.15.0, Pavlov et al. 2008) and addi-
tional IDL routines for the IFS data reduction (Mesa et al. 2015).
The modeling and subtraction of the stellar speckle pattern for
both the IRDIS and IFS data set was performed with an sPCA
(smart Principal Component Analysis) algorithm based on Ab-
sil et al. (2013) using the same setup as described in Keppler
et al. (2018). Figure 1 shows the high-quality IRDIS combined
K1K2 image of PDS 70. The outer disk and the planetary com-
panion inside the gap are clearly visible. In addition, there are
several disk related features present, which are further described
in Appendix A. For this image the data were processed with a
classical ADI reduction technique (Marois et al. 2006) to mini-
mize self-subtraction of the disk. The extraction of astrometric
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Fig. 1. IRDIS combined K1K2 image of PDS 70 using classical ADI
reduction technique showing the planet inside the gap of the disk around
PDS 70. The central part of the image is masked out for better display.
North is up, East is to the left.

and contrast values was performed by injecting negative point
source signals into the raw data (using the unsaturated flux mea-
surements of PDS 70) which were varied in contrast and position
based on a predefined grid created from a first initial estimate of
the planets contrast and position. For every parameter combina-
tion of the inserted negative planet the data were reduced with
the same sPCA setup (maximum of 20 modes, protection angle
of 0.75⇥FWHM) and a �2 value within a segment of 2⇥FWHM
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system properties based on interferometric measurements, high
contrast imaging observations obtained with VLT/SPHERE, and
existing and new RV data. We present the observations and the
related data processing in Section 2. We derive a new age esti-
mate for the system in Section 3. We analyse the companion pho-
tometric properties following an empirical approach (Section 4)
and using atmospheric models (Section 5). The Section 6 sum-
marizes the mass estimates of GJ504b that can infered from the
analysis presented in the previous sections. We exploit in Sec-
tion 7 the companion astrometry, the RV measurements, and the
interferometric radius of GJ 504A to study the system architure.
We discuss our results in Section 8 and summarize our findings
in Section 9.

2. Observations

2.1. SPHERE high contrast observations

We observed GJ 504 on seven di↵erent nights with the SPHERE
instrument mounted on the VLT/UT3 (Table 1) as part of the
guaranteed time observation (GTO) planet search survey SHINE
(Chauvin et al. 2017). All the observations were acquired in
pupil-tracking mode with the 185mas diameter apodized-Lyot
coronograph (Carbillet et al. 2011; Guerri et al. 2011).

The target was observed on May 6, 2015, June 3, 2015,
March 29, 2015, and February 10, 2017 with the IRDIFS mode
of SPHERE. The mode enables operating the IRDIS instrument
(Dohlen et al. 2008) in dual-band imaging mode (DBI; Vigan
et al. 2010) with the H2H3 filters (Table 1), and the IFS inte-
gral field spectrograph (Claudi et al. 2008) in Y-J (0.95-1.35µm,
R� = 54) mode in parallel. The companion lies inside the circu-
lar field of view (FOV) of ⇠5” radius. It is however outside of
the 1.7”⇥1.7” IFS FOV.

We obtained additional observations with the IRDIFS_EXT
mode on June 5, 2015. The mode enables DBI with the K1K2
filters (Table 1) and the simultaneous use of the IFS in the Y-H
mode (0.95-1.64µm, R� = 30). GJ 504 was then re-observed on
June 6, and 7, 2015 with IRDIS and the DBI Y2Y3 and J2J3
filters (Table 1).

We collected additional calibration frames with the wa✏es
pattern created by the deformable mirror for the May and June
2015 epochs. Those frames were used to ensure an accurate reg-
istration of the star position behind the coronagraph. The wa✏e
pattern was maintained during the whole sequences of 2016 and
2017 IRDIFS observations to allow a registration of the individ-
ual frames along the deep imaging sequence. We also collected
non saturated exposures of the star before and after the sequence
of coronographic exposures for astrometric and photometric ex-
traction of point sources.

The IRDIS and IFS datasets were reduced at the SPHERE
Data Center (DC; Delorme et al. 2017b) using the SPHERE Data
Reduction and Handling (DRH) pipeline (Pavlov et al. 2008).
The DRH carried out the basic corrections for bad pixels, dark
current, and flat field. The DC performed an improved wave-
length calibration, a correction of the cross-talk, and removal of
bad pixels for the IFS data (Mesa et al. 2015). It also applied the
anamorphism correction to the IRDIS and IFS data. We regis-
tered the frames fitting a two-dimentional mo↵at function to the
wa✏es.

We temporally binned some of the registered cubes of IRDIS
frames to ensure we could run the ADI algorithms e�ciently
(bining factors of 2, 4, and 8 for the K1K2, J2J3, and Y2Y3 data;
factors of 7 and 2 for the May 2015 and June 2015 H2H3 data).
We also selected the resulting IFS datacubes based on the flux

Fig. 1. High contrast images of the immediate environnement of
GJ 504A obtained with the DBI filters of IRDIS and using the TLOCI
angular di↵erential imaging algorithm. The star center is located at the
lower-left corner of the images. GJ 504b is re-detected (arrow) into the
Y2, Y3, J3, H2, and K1 bands. The companion is tentatively re-detected
in the H3 channel. The H2-H3 images correspond to the May 2016 data.

ratio between and an outer and an inner ring contained within
the adaptive optics (AO) correction radius to ensure keeping the
frames with the best contrasts beyond the 1.7" square FoV. Con-
versely, we selected 80% (H2H3, K1K2, J2J3 datasets) to 60%
(Y2Y3 dataset) of the frames having the less extended halo be-
yond the AO correction radius where GJ 504b lies (between 19
and 26 full-width-at-half-maxima).

The absolute on-sky orientation of the instrument and the
detector pixelscale were calibrated as part of a long-term moni-
toring conducted during the GTO (Maire et al. 2016a,b).

We used the Specal pipeline (Galicher et al., in prep.) to
apply the angular di↵erential imaging (ADI; Marois et al. 2006)
steps on the IRDIS data. We applied the Template Locally Opti-
mized Combination of Images algorithm (TLOCI; Marois et al.
2014) to extract the photometry and astrometry of the compan-
ion and to derive detection limits. The algorithm has been shown
to extract the flux and position of such companions with a high
fidelity (Chauvin et al, in prep). We also used the Principal Com-
ponent Analysis (PCA; Soummer et al. 2012) implemented in
Specal and ANDROMEDA (Cantalloube et al. 2015) algorithms
to confirm our results. We processed the IFS data with a cus-
tom pipeline exploiting the temporal and spectral diversity (Vi-
gan et al. 2015). The pipeline derived detection limits following
the estimation of the flux losses based on the injection of fake
planets with flat spectra. The sensitivity curves account for the
small-number statistics a↵ecting the noise estimates at the inner-
most working angles (Mawet et al. 2014).

The Y3, J3, H2, and K1 filter sample the main emission
peaks of cold companions ("on-channels") while the central
wavelengths of the Y2, J2, H3, and K1 filters are chosen to sam-
ple the molecular absorptions. The companion is therefore re-
detected in the "on" chanels with S/N ranging from 10 to 46
(Figure 1). We also re-detect the object into the Y2 (�Y2 =
16.71±0.16 mag) channel at a lower S/N (of 7). To conclude, we
also tentatively re-detect the object in the H3 band in the May
2016 data, which are the deepest ones obtained on the system
with SPHERE. We considered it as an upper limit in the Sec-
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Table 1. Stellar parameters of PDS 70.

Parameter Unit Value References
Distance pc 113.43±0.52 1
Te↵ K 3972±36 2
Radius R� 1.26±0.15 computed from 2
B mag 13.494±0.146 3
V mag 12.233±0.123 3
g0 mag 12.881±0.136 3
r0 mag 11.696±0.106 3
i0 mag 11.129±0.079 3
J mag 9.553±0.024 4
H mag 8.823±0.040 4
Ks mag 8.542±0.023 4
Age Myr 5.4±1.0 this work
Mass M� 0.76±0.02 this work
AV mag 0.05+0.05

�0.03 this work

References. (1) Gaia Collaboration et al. (2016, 2018); (2) Pecaut &
Mamajek (2016); (3) Henden et al. (2015); (4) Cutri et al. (2003).

fit as well as the independently determined e↵ective temperature
Te↵ and radius are listed in Table 1. We perform a simultaneous
fit of all these observables. The uncertainties are treated as Gaus-
sians and we assume no covariance between them.
We use a Gaussian prior from Gaia for the distance and a Gaus-
sian prior with mean 0.01 mag and sigma 0.07 mag, truncated at
AV=0 mag, for the extinction (Pecaut & Mamajek 2016). Given
AV , we compute the extinction in all the adopted bands by as-
suming a Cardelli et al. (1989) extinction law. We use a Chabrier
(2003) initial mass function (IMF) prior on the mass and a uni-
form prior on the age. The stellar models adopted to compute
the expected observables, given the fit parameters, are from the
MIST project (Paxton et al. 2011, 2013, 2015; Dotter 2016; Choi
et al. 2016). These models were extensively tested against young
cluster data, as well as against pre-main sequence stars in mul-
tiple system, with measured dynamical masses, and compared
to other stellar evolutionary models (see Choi et al. (2016) for
details). The result of the fit constrains the age of PDS 70 to
5.4 ± 1.0 Myr and its mass to 0.76 ± 0.02 M�. The best fit pa-
rameter values are given by the 50% quantile (the median) and
their uncertainties are based on the 16% and 84% quantile of the
marginalized posterior probability distribution. The stellar pa-
rameters are identical to the values used by Keppler et al. (2018).

3. Observations and data reduction

3.1. Observations

We observed PDS 70 during the SPHERE/SHINE GTO program
on the night of February 24th, 2018. The data were taken in the
IRDIFS-EXT pupil tracking mode using the N_ALC_YJH_S
(185 mas in diameter) apodized-Lyot coronagraph (Martinez
et al. 2009; Carbillet et al. 2011). We used the IRDIS (Dohlen
et al. 2008) dual-band imaging camera (Vigan et al. 2010) with
the K1K2 narrow-band filter pair (�K1 = 2.110 ± 0.102 µm, �K2

= 2.251 ± 0.109 µm). A spectrum covering the spectral range
from Y to H-band (0.96–1.64 µm, R� = 30) was acquired simul-
taneously with the IFS integral field spectrograph (Claudi et al.

straints the allowed distance values. As a result, the best fit distance
value reported here from the MCMC posterior draws is identical to the
value provided by the Gaia collaboration.

2008). We set the integration time for both detectors to 96 s and
acquired a total time on target of almost 2.5 hours. The total field
rotation is 95.7�. During the course of observation the average
coherence time was 7.7 ms and a Strehl ratio of 73% was mea-
sured at 1.6 µm, providing excellent observing conditions.

3.2. Data reduction

The IRDIS data were reduced as described in Keppler et al.
(2018). The basic reduction steps consisted of bad-pixel correc-
tion, flat fielding, sky subtraction, distortion correction (Maire
et al. 2016), and frame registration.
The IFS data were reduced with the SPHERE Data Center
pipeline (Delorme et al. 2017), which uses the Data Reduction
and Handling software (v0.15.0, Pavlov et al. 2008) and addi-
tional IDL routines for the IFS data reduction (Mesa et al. 2015).
The modeling and subtraction of the stellar speckle pattern for
both the IRDIS and IFS data set was performed with an sPCA
(smart Principal Component Analysis) algorithm based on Ab-
sil et al. (2013) using the same setup as described in Keppler
et al. (2018). Figure 1 shows the high-quality IRDIS combined
K1K2 image of PDS 70. The outer disk and the planetary com-
panion inside the gap are clearly visible. In addition, there are
several disk related features present, which are further described
in Appendix A. For this image the data were processed with a
classical ADI reduction technique (Marois et al. 2006) to mini-
mize self-subtraction of the disk. The extraction of astrometric
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Fig. 1. IRDIS combined K1K2 image of PDS 70 using classical ADI
reduction technique showing the planet inside the gap of the disk around
PDS 70. The central part of the image is masked out for better display.
North is up, East is to the left.

and contrast values was performed by injecting negative point
source signals into the raw data (using the unsaturated flux mea-
surements of PDS 70) which were varied in contrast and position
based on a predefined grid created from a first initial estimate of
the planets contrast and position. For every parameter combina-
tion of the inserted negative planet the data were reduced with
the same sPCA setup (maximum of 20 modes, protection angle
of 0.75⇥FWHM) and a �2 value within a segment of 2⇥FWHM
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system properties based on interferometric measurements, high
contrast imaging observations obtained with VLT/SPHERE, and
existing and new RV data. We present the observations and the
related data processing in Section 2. We derive a new age esti-
mate for the system in Section 3. We analyse the companion pho-
tometric properties following an empirical approach (Section 4)
and using atmospheric models (Section 5). The Section 6 sum-
marizes the mass estimates of GJ504b that can infered from the
analysis presented in the previous sections. We exploit in Sec-
tion 7 the companion astrometry, the RV measurements, and the
interferometric radius of GJ 504A to study the system architure.
We discuss our results in Section 8 and summarize our findings
in Section 9.

2. Observations

2.1. SPHERE high contrast observations

We observed GJ 504 on seven di↵erent nights with the SPHERE
instrument mounted on the VLT/UT3 (Table 1) as part of the
guaranteed time observation (GTO) planet search survey SHINE
(Chauvin et al. 2017). All the observations were acquired in
pupil-tracking mode with the 185mas diameter apodized-Lyot
coronograph (Carbillet et al. 2011; Guerri et al. 2011).

The target was observed on May 6, 2015, June 3, 2015,
March 29, 2015, and February 10, 2017 with the IRDIFS mode
of SPHERE. The mode enables operating the IRDIS instrument
(Dohlen et al. 2008) in dual-band imaging mode (DBI; Vigan
et al. 2010) with the H2H3 filters (Table 1), and the IFS inte-
gral field spectrograph (Claudi et al. 2008) in Y-J (0.95-1.35µm,
R� = 54) mode in parallel. The companion lies inside the circu-
lar field of view (FOV) of ⇠5” radius. It is however outside of
the 1.7”⇥1.7” IFS FOV.

We obtained additional observations with the IRDIFS_EXT
mode on June 5, 2015. The mode enables DBI with the K1K2
filters (Table 1) and the simultaneous use of the IFS in the Y-H
mode (0.95-1.64µm, R� = 30). GJ 504 was then re-observed on
June 6, and 7, 2015 with IRDIS and the DBI Y2Y3 and J2J3
filters (Table 1).

We collected additional calibration frames with the wa✏es
pattern created by the deformable mirror for the May and June
2015 epochs. Those frames were used to ensure an accurate reg-
istration of the star position behind the coronagraph. The wa✏e
pattern was maintained during the whole sequences of 2016 and
2017 IRDIFS observations to allow a registration of the individ-
ual frames along the deep imaging sequence. We also collected
non saturated exposures of the star before and after the sequence
of coronographic exposures for astrometric and photometric ex-
traction of point sources.

The IRDIS and IFS datasets were reduced at the SPHERE
Data Center (DC; Delorme et al. 2017b) using the SPHERE Data
Reduction and Handling (DRH) pipeline (Pavlov et al. 2008).
The DRH carried out the basic corrections for bad pixels, dark
current, and flat field. The DC performed an improved wave-
length calibration, a correction of the cross-talk, and removal of
bad pixels for the IFS data (Mesa et al. 2015). It also applied the
anamorphism correction to the IRDIS and IFS data. We regis-
tered the frames fitting a two-dimentional mo↵at function to the
wa✏es.

We temporally binned some of the registered cubes of IRDIS
frames to ensure we could run the ADI algorithms e�ciently
(bining factors of 2, 4, and 8 for the K1K2, J2J3, and Y2Y3 data;
factors of 7 and 2 for the May 2015 and June 2015 H2H3 data).
We also selected the resulting IFS datacubes based on the flux

Fig. 1. High contrast images of the immediate environnement of
GJ 504A obtained with the DBI filters of IRDIS and using the TLOCI
angular di↵erential imaging algorithm. The star center is located at the
lower-left corner of the images. GJ 504b is re-detected (arrow) into the
Y2, Y3, J3, H2, and K1 bands. The companion is tentatively re-detected
in the H3 channel. The H2-H3 images correspond to the May 2016 data.

ratio between and an outer and an inner ring contained within
the adaptive optics (AO) correction radius to ensure keeping the
frames with the best contrasts beyond the 1.7" square FoV. Con-
versely, we selected 80% (H2H3, K1K2, J2J3 datasets) to 60%
(Y2Y3 dataset) of the frames having the less extended halo be-
yond the AO correction radius where GJ 504b lies (between 19
and 26 full-width-at-half-maxima).

The absolute on-sky orientation of the instrument and the
detector pixelscale were calibrated as part of a long-term moni-
toring conducted during the GTO (Maire et al. 2016a,b).

We used the Specal pipeline (Galicher et al., in prep.) to
apply the angular di↵erential imaging (ADI; Marois et al. 2006)
steps on the IRDIS data. We applied the Template Locally Opti-
mized Combination of Images algorithm (TLOCI; Marois et al.
2014) to extract the photometry and astrometry of the compan-
ion and to derive detection limits. The algorithm has been shown
to extract the flux and position of such companions with a high
fidelity (Chauvin et al, in prep). We also used the Principal Com-
ponent Analysis (PCA; Soummer et al. 2012) implemented in
Specal and ANDROMEDA (Cantalloube et al. 2015) algorithms
to confirm our results. We processed the IFS data with a cus-
tom pipeline exploiting the temporal and spectral diversity (Vi-
gan et al. 2015). The pipeline derived detection limits following
the estimation of the flux losses based on the injection of fake
planets with flat spectra. The sensitivity curves account for the
small-number statistics a↵ecting the noise estimates at the inner-
most working angles (Mawet et al. 2014).

The Y3, J3, H2, and K1 filter sample the main emission
peaks of cold companions ("on-channels") while the central
wavelengths of the Y2, J2, H3, and K1 filters are chosen to sam-
ple the molecular absorptions. The companion is therefore re-
detected in the "on" chanels with S/N ranging from 10 to 46
(Figure 1). We also re-detect the object into the Y2 (�Y2 =
16.71±0.16 mag) channel at a lower S/N (of 7). To conclude, we
also tentatively re-detect the object in the H3 band in the May
2016 data, which are the deepest ones obtained on the system
with SPHERE. We considered it as an upper limit in the Sec-
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Gas: H, He → When?

Ice  → Where?

Silicates 

Metals

The internal composition of exoplanets is inferred from planetary 
interior models: 
• Need parameters as inputs (stellar and planetary) 
• Hint toward formation and habitability 
• Suffer from degeneracy

Valencia+ 2013 
(Bulk Composition of GJ 1214b and 
Other Sub-Neptune Exoplanets)

Internal composition of exoplanets

Need ~2-3% precision on Rp to derive an internal structure
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Find planets with suitable 
atmosphere and liquid water in the 

habitable zone
→ Teff, L★

Habitable zone
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4 Gijs D. Mulders

Trends with Stellar Metallicity

There is a general consensus that giant planet occurrence rates increase with host
star metallicity, see also the review by Udry and Santos (2007). The giant planet-
metallicity relation is seen in radial velocity surveys of sun-like stars, M dwarfs, and
evolved stars, and has also been identified for transiting planets in the Kepler survey.
However, Sub-Neptunes are found around stars with a wider range of metallicities,
with no clear preference for metal-rich stars. Throughout this chapter, the logarithm
of the iron abundance with respect the solar abundance, [Fe/H], is used to represent
stellar metallicity.

Fig. 2 Giant planet occurrence rate as function of stellar metallicity, from Fischer and Valenti
(2005) figure 5. The red solid line shows a quadratic relation between planet occurrence and stellar
metallicity (b = 2, eq. 1). Figure reproduced from Fischer and Valenti (2005) with permission from
the authors.

Positive Giant Planet-Metallicity Correlation

Giant planets occur more frequently around stars with higher metallicities (See Fig.
2). The first indications of a planet-metallicity correlation were found by Gonzalez
(1997) and Marcy et al. (1997) based on metallicities of a handful of exoplanet hosts
including 51 Peg b. The trend that giant planets are preferentially found around

Fischer & Valenti 2005
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Fig. 3 Metallicity of planet host stars as function of planet radius. Points represent spectroscopic
metallicities of Kepler exoplanet hosts from Buchhave et al. (2014). The average host star metal-
licity correlates with planet radius, as indicated for a set of discrete radius bins shown in orange
(Buchhave et al. 2014) and for a continuous planet radius-metallicity relation (Schlaufman 2015)
shown with the dashed purple line. The expected range of planet radii from In Situ planet formation
models by Dawson et al. (2015) are shown in cyan.

fied for giant planets disappears when considering smaller planets (Fig 3, Buchhave
et al. 2014).

Neptunes The first indications that Neptune-mass planets are not preferentially
found around metal rich stars, as opposed to giant planet hosts, were found by
Udry et al. (2006) in a sample including M dwarfs planet hosts, and later con-
firmed by Sousa et al. (2008). The possibility that a higher planet occurrence rate of
Neptune-sized planets around M dwarfs contributed to this correlation was investi-
gated by Ghezzi et al. (2010), who recovered the wide range of stellar metallicities
for Neptune-mass planet hosts in a sample of FGK dwarfs. This trend was con-
firmed by Mayor et al. (2011), who show that planets less massive than 30-40M�
are equally common around metal-poor and metal-rich stars. The same metallicity-
independence was found for M dwarfs hosting Neptune mass and smaller planets
(Rojas-Ayala et al. 2012; Neves et al. 2013).

Planet Populations as a Function of Stellar Properties 9

Fig. 4 Giant planet occurrence as function of stellar mass, from Johnson et al. (2010) figure 4. The
histogram shows the observed planet occurrence rate. The red red line show the predicted planet
occurrence rate based on the metallicity distribution of stars in each stellar mass bin. The blue line
shows the stellar-mass dependence at solar metallicity, compare to the predicted relation from the
planet formation model by Kennedy and Kenyon (2008). Figure reproduced from Johnson et al.
(2010) with permission from the authors.

Giant planets

Giant planets are found less frequently are low-mass M dwarfs than around sun-like
stars and more frequently around evolved stars with higher masses (Fig. 4). How-
ever, the presence of a giant planet-stellar mass correlation is less well established
than the planet-metallicity correlation. The main challenge lies in correcting for the
planet-metallicity correlation, which is stronger ( fgiant µ [Fe/H]2) than the planet-
mass correlation ( fgiant µ M?).

Tentative evidence for a decreased giant planet occurrence around M dwarfs
compared to sun-like stars was found by Laws et al. (2003) and Endl et al. (2006).
The giant planet occurrence rate within 2.5 au increases by a factor of ⇠ 3 from M
stars to sun-like stars (Butler et al. 2006; Cumming et al. 2008). Planet occurrence
rates for a sample of late K dwarfs support the positive correlation with stellar mass
(Gaidos et al. 2013).

Johnson+ 2010
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peratures, the elevated planet occurrence rates around M dwarfs compared to FGK
stars is clearly present.

Fig. 6 Overview of planet occurrence rates as a function of effective temperature in the literature
for planets between 1-4R� and P < 50 days. Occurrence rates were re-scaled assuming uniform
occurrence in log period and log radius for purpose of this comparison. The occurrence rates for
low-mass M dwarfs are systematically higher than those of FGK stars. Two studies (Howard et al.
2012; Mulders et al. 2015c) also show trends within the sample of F,G, and K stars. References –
Dressing and Charbonneau (2015); Mulders et al. (2015c); Morton and Swift (2014); Gaidos et al.
(2016); Howard et al. (2012); Silburt et al. (2015); Fressin et al. (2013); Youdin (2011); Dong and
Zhu (2013); Petigura et al. (2013).

Selection effects Because Kepler is a magnitude-limited survey, more luminous
stars can be detected at larger distances. The observed population of more mas-
sive stars is therefore, on average, more distant from the sun and higher above the
galactic plane, and may probe a stellar population that may be older and lower in
metallicity. Future and ongoing transit surveys may quantify the effect of differ-
ent galactic locations on planet occurrence rates. The differences in the distribution
of stellar metallicities between M dwarfs and FGK stars are small. Howard et al.
(2012) show that, based on galactic stellar models, the expected differences in mean
metallicity between stars of different spectral types probed with Kepler is less than

Planet Populations as a Function of Stellar Properties 11

Fig. 5 Debiased planet radius distribution of exoplanets around M dwarfs (purple) and FGK stars
(cyan), from Mulders et al. (2015c) Figure 5. Planets smaller than 2.8 R� are 3.5 times more
abundant around M stars, while giant planets occurrence is at least a factor 2 higher around FGK
stars.

cussed before. This trend is not a result of selection and detection biases as briefly
discussed below.

Detection biases Occurrence rate calculations take into account planet detection
efficiency as function stellar properties such as stellar size and noise level. At
this point it is worth noting that many occurrence rate studies employing differ-
ent methodologies have been conducted on the Kepler sample of M dwarfs that
generally find good agreement on planet occurrence rates (Dressing and Charbon-
neau 2013; Morton and Swift 2014; Dressing and Charbonneau 2015; Mulders et al.
2015c; Gaidos et al. 2016). Comparison with occurrence rate studies around sun-like
stars can be made – though one has to keep in mind that different treatment of de-
tection efficiency can affect occurrence rate estimates (e.g. Christiansen et al. 2015;
Burke et al. 2015). Figure 6 shows the occurrence of rate of sub-Neptunes (1�4 R�)
at orbital periods less than 50 days as a function of stellar effective temperature as
estimated by different studies. For purposes of this comparison, occurrence rates
were rescaled when only estimates for a different range of planet properties were
available, assuming a uniform occurrence in log planet radius and log orbital pe-
riod. While there is significant scatter in occurrence rates at similar effective tem-

Mulders+ 2015cMulders+ 2018

Mulders+ 2018

Links between exoplanets occurence and stars 
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Stellar parameters drive our knowledge of exoplanets.

R. Ligi et al.: Stellar and planetary properties of HD 219134

Table 6. Prior ranges for interior parameters.

Parameter Prior range Distribution

Core radius rcore (0.01–1) rcore+mantle Uniform in r
3
core

Fe/Simantle 0 – Fe/Sistar Uniform
Mg/Simantle Mg/Sistar Gaussian
fmantle 0.–0.2 Uniform
Size of rocky interior rcore+mantle (0.01–1) Rp Uniform in r

3
core+mantle

Pressure imposed by gas envelope Penv 20 mbar–100 bar Uniform in log-scale
Temperature of gas envelope ↵ 0.5–1 Uniform
Mean molecular weight of gas envelope µ 16–50 g mol�1 Uniform

where genv and Tenv are gravity at the bottom of the atmosphere
and mean atmospheric temperature, respectively. The quantity
R
⇤ is the universal gas constant (8.3144598 J mol�1 K�1) and µ

the mean molecular weight. The mass of the atmosphere menv is
directly related to the pressure Penv as

menv = 4⇡Penv
(Rp � denv)2

genv
, (9)

where Rp � denv is the radius at the bottom of the atmosphere.
The atmosphere’s constant temperature is defined as

Tenv =↵Te↵

r
R?

2a
, (10)

where a is the semi-major axis. The factor ↵ accounts for pos-
sible cooling and warming of the atmosphere and can vary
between 0.5 and 1, which is equivalent to the observed range of
albedos among solar system bodies (0.05 for asteroids up to 0.96
for Eris). The upper limit of 1 is verified against the estimated
↵max (see Appendix A in Dorn et al. 2017), which takes possible
greenhouse warming into account.

4.2.2. Inference results

Figure 5 summarises the interior estimates. Both planets have
mantle compositions and core sizes that fit bulk density and the
stellar abundance constraint. The core fraction of both planets
is close to that of Venus and Earth ((rcore/rcore+mantle)� = 0.53),
which validates their denomination as super-Earths. Compared
to planet c, the lower density of 10% of planet b is associated
with a slightly smaller core (by 10%) and higher fmantle (by 45%),
which indicates that a significantly stronger reduction of mantle
density is plausible given the data. The estimates of fmantle for
planet b and c are 0.073+0.06

�0.05 and 0.05+0.06
�0.04, respectively. Factors

of fmantle up to 0.25 can be associated with high melt fractions
(for Earth-sized planets). Similar values can be achieved when
the mantle composition is enriched by very refractory elements
(i.e. Al, Ca).

It should be noted that differences between the interiors are
small, since uncertainties on bulk densities are relatively large.
The data allow for no difference in bulk densities. However, a
significant (more than 5%) difference exists with 70% probabil-
ity. In this work, we used an interior model that allows us to
quantify any possible difference in the rocky interiors of both
planets. We assumed that any volatile layer is limited to a 100 bar
atmosphere (similar to Venus) at maximum. Further arguments
are necessary to evaluate whether a difference between the rocky
interiors, specifically the mantle densities, can exist.

Nonetheless, because Bower et al. (2019) demonstrated that
for Earth-sized planets a fully molten mantle is 25% less dense
than a solidified mantle, this possibility must be considered,
and it is interesting to investigate whether planet b could be
less dense because partially molten. Heating by irradiation from
the host star would not be enough; the black-body equilib-
rium temperature for this planet is 1036 K. Nevertheless, in the
next subsection, we discuss a possible dynamical origin for the
possible difference between HD 219134 b and c.

4.3. Possible origin of a partial mantle melt for HD 219134 b

Large melt fractions may be sustained on planet b by tidal
heating. In the case of synchronous rotation with spin-orbit
alignment, which is likely for close-in planets such as HD 219134
b, tidal dissipation acts only on planets on eccentric orbits around
the star. The power is given by (see e.g. Lainey et al. 2009)

Ė =
21
2

k2

Q

(!Rp)5

G
e

2, (11)

where k2 is the Love number and Q the quality factor of
the planet of radius Rp and spin or orbital frequency !. The
key parameter k2

Q
depends on the internal properties of the

body8. The dissipated energy Ė heats the planet and damps the
eccentricity of the orbit, ultimately leading to its circularisa-
tion and a reduction of the semi-major axis. To maintain tidal
heating, the orbital eccentricity must be excited by the interac-
tion with other secondary objects, as is the case for Jupiter’s
moon Io for instance. In order to investigate if tidal heating on
planet b is sufficient enough, we ran numerical simulations of
the planetary system using the N-body code SyMBA (Duncan
et al. 1998).

To build our initial conditions, we took the e,$, orbital peri-
ods, K, and mid-transit time from Gillon et al. (2017). They
measure a non-zero eccentricity for planets c, f , and d, but
not for planet b, whose eccentricity is fixed to zero to fit the
other orbital parameters. They do not provide data for the out-
ermost two planets g and h, but the long orbital periods of
these planets make them unlikely to affect the inner four plan-
ets, and their orbital parameters suffer larger uncertainty so we
neglect them in our simulations. We find that the eccentricity
of planet b is excited by the other planets. In absence of dissi-
pation, the system is stable for at least 1 Gyr, and eb oscillates

8 For reference, it is of the order of 10�4,�5 for gas giant planets and
about 0.025 for the Earth.
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Stellar parameters dependence

• Direct and indirect methods do not provide the same observables. 
• Need of stellar parameters to derive exoplanets properties. 
• The « basic » planetary parameters depend on the stellar mass, radius, density…  
• Often, need of a model to derive additional parameters, that are important to  

characterize the system (like the stellar age). 
• Open questions on the link between stellar parameters and exoplanets population.

Interferometry can help in this context by 
providing stellar parameters. 
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CHARA SUSI

NPOI

VLTI

Interferometers worldwide
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Bsol

Interferometer

Angular resolution 
≈ λ/B

➜ larger resolution 
➜ smaller objects

D

Classical telescope

Angular resolution 
≈ λ/D

➜ larger sensitivity 
➜ fainter objects

17-28/4/2010 2010 VLTI school - Porquerolles 7

B > D

λ/D Inter-fringes λ/B

Principles of interferometry
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I = O ⊗ PSF 

TF(I) = TF(O) x TF(PSF) 

TF(I) = V(B) = |𝜸(0)|

Contrast of fringes  
= Complex visibility (V) 
= FT of the surface brightness 
distribution of the star 

(van Cittert-Zernike theorem)

In the case of a uniform disk: 

with

angular diameter of the star

⊗I =

Phase Φ

Modulus |V|

Principles of interferometry
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small star

big star

contrast = 1

contrast = 0

Point source → contrast = 1 
(Young). 


Extended source  
→ several fringe patterns which 
don’t overlap exactly  
→ contrast < 1, depends on 
telescope separation (baseline). 

1.22 λ/B
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Aspro2 (JMMC)
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The problem of limb-darkening
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A&A 529, A75 (2011)

GDEs were presented, for the first time, as continuous functions
of the stellar masses, age, chemical composition, and mixing-
length parameter. These theoretical values of β1 are supported
by recent observations of double-lined eclipsing binaries and
rapidly rotating stars (Pantazis & Niarchos 1998; Niarchos 2000;
Djurasevic et al. 2003; Che et al., priv. commun.). However,
photometric observations are usually performed in certain wave-
length bands instead of bolometrically, and therefore monochro-
matic (or band) GDCs are to be used in modelling efforts. These
bandpass-dependent coefficients were computed by Claret 2003
from realistic atmosphere models instead of black body spectra.
It is important to point out that all these comments can also be
applied to planetary transits, because they can be considered as
a special case of eclipsing binaries.

In this paper we present new calculations of limb-darkening
coefficients for five laws by adopting 100 µ points instead
of the usually adopted 17 or 15 points. The specific intensi-
ties of the ATLAS (Kurucz, priv. commun.) and PHOENIX
(Hauschildt, priv. commun.) models were used to compute the
limb-darkening coefficients. The calculations cover the pass-
bands of the Kepler, CoRoT and Spitzer space missions as
well as the commonly used uvby (Strömgren), UBVRIJHK
(Johnson-Cousins) and Sloan filter systems. We also perform
the calculations for the bi-parametric approximations by adopt-
ing by adopting the flux conservation method (FCM) to provide
users with an additional tool to estimate the theoretical error
bars.

New values of the gravity-darkening coefficients y(λ) are
also computed using the same grids of stellar atmosphere mod-
els. The calculations were carried out by adopting a more gen-
eral differential equation, which now also takes into account the
contributions of the dependence of the intensities on the local
gravity and, more importantly, the effect of convection. The new
tables presented in this paper supersede our old values of y(λ),
which were computed with a simpler equation.

2. The limb-darkening coefficients for ATLAS
and PHOENIX models

We have computed limb-darkening coefficients for several mod-
els that mainly cover the transmission curves of the Kepler,
CoRoT, and Spitzer space missions although we also provide
LDCs for the traditional passbands. The calculations for the
Spitzer space mission were carried out considering the full ar-
ray average spectral responses for four bands. As usual, we have
used the least-square method (LSM) to fit the following five
limb-darkening laws to the specific intensities of the models:
the linear law
I(µ)
I(1)
= 1 − u(1 − µ), (1)

the quadratic law

I(µ)
I(1)
= 1 − a(1 − µ) − b(1 − µ)2, (2)

the square root law

I(µ)
I(1)
= 1 − c(1 − µ) − d(1 − √µ), (3)

the logarithmic law

I(µ)
I(1)
= 1 − e(1 − µ) − fµ ln(µ), (4)

and a more general law with four terms

I(µ)
I(1)
= 1 −

4∑

k=1

ak(1 − µ k
2 ), (5)

where I(1) is the specific intensity at the centre of the disc, and
u, a, b, c, d, e, f , and ak are the corresponding LDCs. The quan-
tity µ is defined by µ = cos(γ), where γ is the angle between the
line of sight and the emergent intensity. The model atmosphere
intensities were convolved with a response function that takes
into account the filter transmission curves for Kepler, CoRoT,
and Spitzer and the reflection from an aluminium-coated mirror,
as explained in our previous papers on the subject. The LDC cal-
culations were performed for 19 metallicities ranging from 10−5

up to 10+1 times the solar abundance, for gravities 0.0 ≤ log g ≤
5.0, and for effective temperatures 2000 K ≤ Teff ≤ 50 000 K.
Five microturbulent velocities (Vξ = 0, 1, 2, 4, 8 km s−1) were
used.

The limb-darkening law described in Eq. (5) has important
advantages compared to the linear or bi-parametric approxima-
tions: the other laws are useful only for limited effective tem-
perature ranges, while the law in Eq. (5) fits well to the mod-
elled specific intensities for the whole ranges of log g and Teff
for which ATLAS and PHOENIX models are available. As this
4-parameter law reproduces the intensity distributions very well
and conserves flux within very small tolerances, we recommend
the users to adopt it whenever the quality of the light curves does
not allow one to derive empirical values.

As explained in the introduction, the adopted numerical
method to derive the LDCs is still a matter of discussion. To pro-
vide a more extensive set of tools to the observers, we have also
computed LDCs by adopting the FCM that conserves, by defi-
nition, the flux, but the corresponding intensity distributions are
not well described. It would be interesting if observers could test
both possibilities (as well as comparing the LDCs derived from
ATLAS and PHOENIX models). Although the LDCs computed
by adopting the ATLAS and PHOENIX models are similar, at
least for the linear fitting (Claret 1998) such a variety of numeri-
cal methods and atmosphere models may provide a good tool to
evaluate the theoretical errors in the LDC more realistically.

As commented in the introduction, observational data of
limb-darkening that can be compared with theoretical predic-
tions is scarce. An example of these data is presented in Claret
(2008), in which a systematic disagreement between theoretical
predictions and semi-empirical linear LDCs was shown based on
observations of nine double-lined eclipsing binaries. However,
the linear limb-darkening law does not describe the specific
intensities well and as such the paper’s conclusions cannot be
considered to be robust. Also for the transits of the planetary
system HD 209458, systematic disagreements between the the-
oretical and empirical LDCs for the linear and quadratic cases
were found (Claret 2009). Even taking into account uncertainties
in the metallicity, microturbulent velocity, and effective tempera-
ture in the calculation of the theoretical LDCs, the corresponding
theoretical predictions cannot match the empirical data.

Specifically for transits obtained with the CoRoT space mis-
sion, Sing (2010) used his method – which combines LSM and
exclusion of limb intensities – to compare his theoretical predic-
tions with semi-empirical LDCs. To compare the present calcu-
lations with those performed by Sing, we show Sing’s results in
Fig. 1 together with our theoretical results obtained using both
LSM and FCM. For the sake of clarity, we only analyse the lin-
ear case, although we recall that this approach is not the most
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Fig. 2. Comparison of di↵erent parametric limb darkening models of the
Sun with the observed limb darkening profile measured by Pierce et al.
(1977) in the H band. The residuals in percentage of the observed in-
tensity profile are shown in the lower panel.

it combines. But both the square root and four-parameter laws
are not significantly more accurate approximations of the profile
of the Sun than the single-parameter power law introduced by
Hestro↵er (1997), at least in the infrared H band that we discuss
here.

The results of the fits of di↵erent parametric LD models, to-
gether with the 3D atmosphere model presented in Sect. 3.1.2,
are listed in Table 3, and the corresponding residuals are shown
in Figs. 5 and 6. A discussion of the residuals of the di↵erent
models is presented in Sect. 3.1.3. The best-fit power law mod-
els adjusted to the PIONIER squared visibilities of ↵Cen A and
B are presented in Figs. 3 and 4, respectively.

3.1.2. Three-dimensional atmosphere model

We interpret our PIONIER observations with the result from
realistic 3D radiative hydrodynamical simulations of convec-
tion. We used the Stagger code (Nordlund & Galsgaard
19955; Beeck et al. 2012) which was previously used to in-
terpret interferometric angular diameter determinations (e.g.
Bigot et al. 2006, 2011). These state-of-the-art simulations pro-
vide extremely realistic modeling of the solar surface (see
e.g. Stein & Nordlund 1998; Nordlund et al. 2009) from first
principles without the need of tuned parameters (e.g., mixing-
length). These simulations also provide in principle reliable limb
darkened intensities. The code solves the full set of conser-
vative hydrodynamical equations coupled to an accurate treat-
ment of the radiative transfer. The equations are solved on
a staggered mesh with a sixth order explicit finite di↵erence
scheme. We used the 3D models for ↵Cen A and B obtained by
Bigot et al. (2008) and Bigot et al. (2006). The domains of simu-
lations are local boxes at the surface (6 ⇥ 6 ⇥ 5.9 Mm for A, and
6⇥ 6⇥ 5.7 Mm for B). They contain the entropy minima and are

5
http://www.astro.ku.dk/~kg/Papers/MHD_code.ps.gz

extended deep enough to have a flat entropy profile at the bottom
(adiabatic regime). The code uses periodic boundary conditions
horizontally and open boundaries vertically. At the bottom of the
simulation, the inflows have constant entropy and pressure. A re-
alistic equation-of-state accounts for ionization, recombination,
and dissociation (Mihalas et al. 1990) and continuous line opac-
ities (Gustafsson et al. 2008). Radiative transfer is solved using
the Feautrier scheme along several vertical and inclined rays.
The wavelength dependence of the radiative transfer is taken
into account using a binning scheme in which the monochro-
matic lines are collected into 12 bins. The stellar parameters that
define our 3D models are: mean Te↵ = 5820 K, log g = 4.32,
[Fe/H] = +0.25 dex for ↵Cen A, and mean Te↵ = 5240 K,
log g = 4.51, [Fe/H] = +0.25 dex for ↵Cen B.

Bigot et al. (2006) presented a first comparison of only two
VLTI/VINCI visibility measurements obtained in the second
lobe of the visibility function of ↵Cen B with the predic-
tion of 3D hydrodynamical simulation. Since the di↵erence be-
tween 3D and 1D is modest for a K dwarf, especially in the
K band, we could only conclude that the 3D approach gave
a marginally better fit than the classical 1D approach. Now
we have a much better coverage of the visibility function with
PIONIER. Our 3D determinations of the angular diameters are
(Table 3) ✓3D[A] = 8.534 ± 0.003 mas (�2

red = 4.85) and
✓3D[B] = 6.037 ± 0.002 mas (�2

red = 4.40). In these error bars
we ignored the contribution of the uncertainty in wavelength
that is a simple scaling factor common to both stars. Calculat-
ing equivalent 1D, LD angular diameters using non-linear four-
parameter LD approximations tabulated by Claret & Bloemen
(2011), we obtain ✓1D[A] = 8.540 ± 0.003 mas (�2

red = 4.98)
and ✓1D[B] = 6.030 ± 0.002 mas (�2

red = 3.93), which is compa-
rable to the 3D LD values. We note that our PIONIER diameter
of ↵ Cen B (✓3D[B] = 6.037 ± 0.002 ± 0.025 mas) is within
1� of the value derived from VINCI observations by Bigot et al.
(2006) (✓3D VINCI[B] = 6.000 ± 0.021 mas).

3.1.3. Quality of the limb darkening models

An indication of the quality of the LD model fit on the PIONIER
visibilities is given by the minimum reduced �2 value (Figs. 5
and 6), but this is not a perfect indicator as we typically have
many more data points in the first lobe of the visibility function
than in the upper lobes. This results in a high weight in the �2,
which does not fully reflect the quality of the LD parameter fit, as
the higher order lobes of the visibility function are the lobes that
constrain these parameters (u,↵, a, b, ...). We therefore discuss
here the properties of the residuals shown in Figs. 5 and 6.

As expected, the uniform disk model is excluded as it largely
overestimates the contrast of the second and higher order lobes
of the visibility functions.

The single-parameter linear, power law and scaled solar
LD models show very similar residuals. The quality of the fit is
very good for the three types of models for ↵Cen A, with essen-
tially symmetric residuals around zero for the second and third
lobes of the visibility function. For ↵Cen B the linear limb dark-
ening model (fitting u as a variable) results in a slightly lower �2

value than the power law and scaled solar models. But we sample
only the first and second lobes of the visibility function for this
star, and we are therefore insensitive to higher order deviations
between the LD model and the observed profile. In other words,
our limited angular resolution of the stellar disk of ↵Cen B does
not allow us to discriminate between the detailed shape of the in-
tensity profile of these three models. The LD angular diameters
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Fig. 9. Comparison of the best-fit power law intensity profiles of
↵Cen A and B (red curves) with the observed solar profile in the H band
(orange curves) measured by Pierce et al. (1977). The horizontal scale
is the same for both diagrams to show the di↵erence in size of the two
stars.

4.2. Linear radii of ↵Cen A and B

The recently determined parallax of the ↵Cen system by
Kervella et al. (2016) of ⇡ = 747.17±0.61 mas allows us to con-
vert the measured LD angular diameters (using the power law
LD) into linear radii. We adopt the IAU convention (Prša et al.
2016) for the nominal solar radius (RN

� = 695 700 km), leading
to the following conversion relation between the linear radius
and the angular diameter:

R[R�] = 9.3009345
✓[mas]

2
d[pc]. (10)

We obtain for ↵Cen A (±�stat ± �syst),

RA = 1.2234 ± 0.0013 ± 0.0051 R� (11)

and for ↵Cen B,

RB = 0.8632 ± 0.0009 ± 0.0036 R�. (12)

The error bars are dominated by the systematic uncertainty on
the e↵ective wavelength of PIONIER. Kervella et al. (2003) de-
termined RA = 1.224 ± 0.003 R�, RB = 0.863 ± 0.005 R�
(Bigot et al. 2006, found RB = 0.863 ± 0.003 R�) from

VLTI/VINCI measurements in the near-infrared K band (� =
2.2 µm), assuming the same parallax as in the present work.
These values are remarkably identical to the present measure-
ments (o↵sets of +0.10� and �0.04�, respectively), indirectly
confirming the quality of our wavelength calibration (Sect. 2.2).

The ratio of the radii of ↵Cen A and B is an interesting dif-
ferential quantity as it is insensitive to the wavelength calibration
of the instrument and the parallax,
RA

RB
= 1.4172 ± 0.0016. (13)

The accuracy of this ratio (0.11%) is limited by the statistical
uncertainties that are very small in our case. This ratio is in per-
fect agreement with the measurement by Kervella et al. (2003)
(RA/RB = 1.418 ± 0.009) and within 1.2� of the prediction
RA/RB = 1.435 ± 0.014 by Thévenin et al. (2002). This quan-
tity is well suited to constrain the models of the ↵Cen pair, as
both stars have the same age and the same initial composition.
Therefore, their evolution can easily be traced in parallel using
numerical models, where the only di↵erence in the input param-
eters are their initial masses.

4.3. Luminosities and effective temperatures

We derive the e↵ective temperatures of ↵Cen A and B consid-
ering the bolometric flux values determined by Boyajian et al.
(2013) and adopted by Heiter et al. (2015): Fbol[A] = (27.16 ±
0.27) ⇥ 10�9 W m�2 and Fbol[B] = (8.98 ± 0.12) ⇥ 10�9 W m�2.
The parallax ⇡ = 747.17 ± 0.61 mas is taken from Kervella et al.
(2016) giving luminosities of

LA = 1.521 ± 0.015 L� (14)
LB = 0.503 ± 0.007 L�. (15)

These values assume a nominal solar luminosity LN
� = 3.828 ⇥

1026 W. A straight application of the Stefan-Boltzmann law gives
e↵ective temperatures of

Te↵[A] = 5795 ± 19 K (16)
Te↵[B] = 5231 ± 21 K (17)

in perfect agreement with Heiter et al. (2015).

5. Conclusions

We presented new high-accuracy interferometric measurements
of the angular diameters and limb darkening parameters of
↵Centauri A and B in the infrared H band. The accuracy on the
angular diameters (0.4%) is presently limited by the wavelength
calibration of the PIONIER instrument, but it will be signifi-
cantly improved when the parallax of the dimensional calibra-
tor HD 123999 will be available from Gaia (Gaia Collaboration
2016). The VLTI/GRAVITY beam combiner (Eisenhauer et al.
2011) will also soon overcome this limitation in the infrared K

band (� = 2.2 µm) thanks to its highly accurate laser-referenced
wavelength calibration (� < 0.1%).

We observe a significant discrepancy of the measured linear
LD parameters u with respect to model predictions from the lit-
erature, which systematically overestimate the limb darkening
of ↵Cen A and B. Setting the value of u from existing tabulated
model atmospheres results in an overestimation of the LD angu-
lar diameter by 0.5% compared to the more realistic power law
profile. Over the complete sample of LD angular diameter val-
ues listed in Table 3 for ↵Cen A and B (considering all para-
metric models), we observe an amplitude of 1% between the
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P. Kervella et al.: The radii and limb darkenings of ↵Cen A & B

Fig. 3. Adjustment of a power law limb darkened disk model to the PIONIER squared visibilities of ↵Cen A (solid gray curve). The dashed gray
curve represents the best-fit uniform disk model. The bottom panels show the residuals of the fit in number of times the statistical error bar. The
coverage of the (u, v) plane is shown in the upper right corner.

Fig. 4. Power law limb darkened disk model fit and residuals for ↵Cen B (same caption as Fig. 3).

of both ↵Cen A and B are very close for the power law and
scaled solar LD models, with a maximum di↵erence between
them of less than 0.1%. This agreement is expected as the LD
angular diameter is essentially constrained by the position in spa-
tial frequency of the minima of the visibility function, which are
only mildly a↵ected by the exact shape of intensity profile.

The two-parameter quadratic and square root models pro-
vide a very good fit to the observed visibility distributions
for ↵Cen A. These models cannot be adjusted to star B be-
cause the angular resolution is too limited. The fit residuals are

indistinguishable from each other and from the single parameter
models (linear and power law). We conclude that the additional
parameter of the quadratic and square root models does not pro-
vide a significant advantage compared to single-parameter mod-
els, at the level of angular resolution we achieved on ↵Cen A.

The four-parameter models with fixed coe�cients taken
from Claret & Bloemen (2011) overestimate the LD of both
stars A and B and therefore also overestimate their angular diam-
eters. We cannot fit the four model parameters ai simultaneously
as this would require that we resolve the stars up to at least the
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Fixed parameters Fitted parameters Calculated parameters
HD AV [Fe/H] log(g) Te↵ ✓SED Fbol Fbol

[cm · s2] [K] [mas] (AV = 0)
3651 0.060 0.1 4.4 ± 0.17 5297 ± 27 0.715 ± 0.014 13.409 ± 0.236 13.163 ± 0.169
9826 0.185 0.1 4.2 ± 0.14 6494 ± 39 1.073 ± 0.016 68.200 ± 2.310 58.448 ± 0.493
19994 0.090 0.2 4.2 ± 0.14 6039 ± 26 0.767 ± 0.011 25.798 ± 0.654 24.980 ± 0.291
75732 0.0075 0.3 4.4 ± 0.12 5219 ± 26 0.709 ± 0.012 12.435 ± 0.168 12.399 ± 0.168
167042 0.103 -0.1 3.2 ± 0.10 4774 ± 33 0.958 ± 0.028 15.886 ± 0.551 12.927 ± 0.429
170693 0.052 -0.5 2.1 ± 0.54 4460 ± 24 1.933 ± 0.023 49.180 ± 0.600 49.723 ± 0.102
173416 0.047 -0.2 2.5 ± 0.10 4735 ± 23 0.917 ± 0.013 13.179 ± 0.265 13.733 ± 0.148
185395 0.328 0.0 4.3 ± 0.15 7181 ± 28 0.775 ± 0.010 49.400 ± 0.460 40.372 ± 0.403
190360 0.044 0.2 4.3 ± 0.09 5577 ± 26 0.669 ± 0.011 14.405 ± 0.195 13.987 ± 0.213
217014 0.078 0.2 4.3 ± 0.11 5804 ± 27 0.689 ± 0.011 17.965 ± 0.238 16.939 ± 0.241
221345 0.046 -0.3 2.4 ± 0.29 4692 ± 25 1.359 ± 0.023 27.983 ± 0.447 27.055 ± 0.418
1367 0.588 0.0 3.0 ± 0.10 5488 ± 23 0.725 ± 0.009 15.959 ± 0.432 9.750 ± 0.060
1671 0.473 -0.1 3.7 ± 0.10 7047 ± 27 0.619 ± 0.007 31.473 ± 0.259 21.401 ± 0.185
154633 0.046 -0.1 3.0 ± 0.10 4934 ± 24 0.788 ± 0.010 12.243 ± 0.211 11.937 ± 0.087
161178 0.408 -0.2 2.4 ± 0.25 5158 ± 26 0.885 ± 0.018 19.799 ± 0.343 15.748 ± 0.078
168151 0.129 -0.3 4.1 ± 0.50 6563 ± 38 0.679 ± 0.016 28.519 ± 0.674 25.442 ± 0.625
209369 0.116 -0.2 3.8 ± 0.10 6447 ± 41 0.682 ± 0.017 26.737 ± 0.686 24.166 ± 0.560
218560 0.059 0 1.5 ± 0.10 4631 ± 24 0.929 ± 0.014 13.375 ± 0.138 12.800 ± 0.134

Table 4: Fixed input parameters to determine the bolometric flux. Fbol is expressed in 108 erg · s�1· cm�2, and the error adopted in
the rest of the study on [Fe/H] is 0.1 dex. We adopt a minimum of 0.1 dex for the error in log(g) (see Sect. 3.1).

HD ✓UD ± �✓UD µ� ✓LD ± �✓LD(%) �2
red

3651 0.687 ± 0.007 0.537 0.722 ± 0.007 (0.97) 0.97
9826 1.119 ± 0.026 0.425 1.161 ± 0.027 (2.34) 6.95
19994 0.731 ± 0.010 0.448 0.761 ± 0.011 (1.41) 0.67
75732 0.687 ± 0.011 0.561 0.724 ± 0.012 (1.64) 0.36
167042 0.998 ± 0.013 0.616 1.056 ± 0.014 (1.28) 0.30
170693 1.965 ± 0.009 0.634 2.097 ± 0.009 (0.41) 0.20
173416 0.937 ± 0.033 0.608 0.995 ± 0.034 (3.45) 0.59
185395 0.726 ± 0.007 0.355 0.749 ± 0.008 (1.01) 8.47
190360 0.596 ± 0.006 0.480 0.622 ± 0.007 (1.08) 1.00
217014 0.624 ± 0.013 0.458 0.650 ± 0.014 (2.14) 2.27
221345 1.404 ± 0.029 0.614 1.489 ± 0.032 (2.16) 2.73
1367 0.719 ± 0.013 0.505 0.754 ± 0.014 (1.84) 0.44
1671 0.582 ± 0.006 0.359 0.600 ± 0.006 (0.92) 0.42
154633 0.763 ± 0.011 0.569 0.804 ± 0.012 (1.44) 0.33
161178 0.897 ± 0.040 0.545 0.944 ± 0.043 (4.50) 1.89
168151 0.642 ± 0.014 0.386 0.664 ± 0.015 (2.20) 0.61
209369 0.601 ± 0.017 0.380 0.621 ± 0.018 (2.85) 1.72
218560 0.875 ± 0.020 0.600 0.927 ± 0.022 (2.38) 0.64

Table 5: Angular diameters of our targets (in mas). Errors in %
are given in parenthesis (see Sect. 3.2).

in [Fe/H]. Since we observed around 720 nm, we had to consider
both R and I filters (in the Johnson-Cousin system).

We first computed linear interpolations over the coe�cients
corresponding to [Fe/H] and log(g) surrounding the stellar pa-
rameters for each filter R and I and each temperature surround-
ing the initial photometric temperature (determined from Fbol)
by ±250 K. (We took the closest values to our stars available
on the tables.) Then, we averaged the resulting LD coe�cients
on the filters to have one coe�cient per temperature. Finally, we
computed linear interpolations until the derived ✓LD calculated
with the LD coe�cient converge with the values of Te↵,? and
Fbol. The final interferometric parameters are given in Table 5.
We used the final LD coe�cient to estimate the final ✓LD using
the LITpro software. Then, the final Te↵,? is directly derived
from the LD diameter and Fbol :

Te↵,? =

0
BBBB@

4 ⇥ Fbol

�SB✓2LD

1
CCCCA

0.25

, (4)

where �SB is the Stefan-Boltzmann constant.
The stellar radius is obtained by combining the LD diame-

ter and the distance d (from Hipparcos parallaxes, van Leeuwen
2007) :

R?[R�] =
✓LD[mas] ⇥ d[pc]

9.305
. (5)

To determine the errors on Te↵,? and R?, we consider that the
parameters on the righthand side of each equation are indepen-
dent random variables with Gaussian probability density func-
tions. For any quantity X, the uncertainty on its estimate is noted
�X , and the relative uncertainty �X/X is noted �̃X . Then, the
standard deviation of each parameter that we want to estimate
is given analytically to first order by a classical propagation of
errors, following the formula :

�̃T e↵,? =

q
((1/2) ⇥ �̃✓LD)2 + ((1/4) ⇥ �̃F bol)2

�̃R? =
q
�̃✓2LD + �̃

2
d ,

(6)

where �✓LD, �Fbol, and �d are the errors on the LD diameter,
bolometrix flux, and distance, respectively. Then, we calculate
the stellar luminosity L? by combining the bolometric flux and
the distance :

L? = 4⇡d2Fbol , (7)

and its error
�̃L? =

q
(2 ⇥ �̃d)2 + �̃F

2
bol . (8)

Finally, we calculate the gravitational mass Mgrav,? using log(g)
and R?

Mgrav,? =
R2
? ⇥ 10log(g)

G
(9)

and its error

�̃Mgrav,? =

r
(2 ⇥ �̃R?)2 +

⇣
�log(g) ⇥ ln(10)

⌘2
. (10)

The parameters and their errors are shown in Table 6.

5

Spatial frequency (in 108/rad)

θLD=0.724 ± 0.012 mas 

Interferometric angular diameter Gaia distance

𝛉

D

𝛉 × D = R★
Ligi+ 2016

Stellar radius
Inteferometers measure the angular diameter of stars. Coupled with the distance, we get the stellar 
radius!
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Fixed parameters Fitted parameters Calculated parameters
HD AV [Fe/H] log(g) Te↵ ✓SED Fbol Fbol

[cm · s2] [K] [mas] (AV = 0)
3651 0.060 0.1 4.4 ± 0.17 5297 ± 27 0.715 ± 0.014 13.409 ± 0.236 13.163 ± 0.169
9826 0.185 0.1 4.2 ± 0.14 6494 ± 39 1.073 ± 0.016 68.200 ± 2.310 58.448 ± 0.493
19994 0.090 0.2 4.2 ± 0.14 6039 ± 26 0.767 ± 0.011 25.798 ± 0.654 24.980 ± 0.291
75732 0.0075 0.3 4.4 ± 0.12 5219 ± 26 0.709 ± 0.012 12.435 ± 0.168 12.399 ± 0.168
167042 0.103 -0.1 3.2 ± 0.10 4774 ± 33 0.958 ± 0.028 15.886 ± 0.551 12.927 ± 0.429
170693 0.052 -0.5 2.1 ± 0.54 4460 ± 24 1.933 ± 0.023 49.180 ± 0.600 49.723 ± 0.102
173416 0.047 -0.2 2.5 ± 0.10 4735 ± 23 0.917 ± 0.013 13.179 ± 0.265 13.733 ± 0.148
185395 0.328 0.0 4.3 ± 0.15 7181 ± 28 0.775 ± 0.010 49.400 ± 0.460 40.372 ± 0.403
190360 0.044 0.2 4.3 ± 0.09 5577 ± 26 0.669 ± 0.011 14.405 ± 0.195 13.987 ± 0.213
217014 0.078 0.2 4.3 ± 0.11 5804 ± 27 0.689 ± 0.011 17.965 ± 0.238 16.939 ± 0.241
221345 0.046 -0.3 2.4 ± 0.29 4692 ± 25 1.359 ± 0.023 27.983 ± 0.447 27.055 ± 0.418
1367 0.588 0.0 3.0 ± 0.10 5488 ± 23 0.725 ± 0.009 15.959 ± 0.432 9.750 ± 0.060
1671 0.473 -0.1 3.7 ± 0.10 7047 ± 27 0.619 ± 0.007 31.473 ± 0.259 21.401 ± 0.185
154633 0.046 -0.1 3.0 ± 0.10 4934 ± 24 0.788 ± 0.010 12.243 ± 0.211 11.937 ± 0.087
161178 0.408 -0.2 2.4 ± 0.25 5158 ± 26 0.885 ± 0.018 19.799 ± 0.343 15.748 ± 0.078
168151 0.129 -0.3 4.1 ± 0.50 6563 ± 38 0.679 ± 0.016 28.519 ± 0.674 25.442 ± 0.625
209369 0.116 -0.2 3.8 ± 0.10 6447 ± 41 0.682 ± 0.017 26.737 ± 0.686 24.166 ± 0.560
218560 0.059 0 1.5 ± 0.10 4631 ± 24 0.929 ± 0.014 13.375 ± 0.138 12.800 ± 0.134

Table 4: Fixed input parameters to determine the bolometric flux. Fbol is expressed in 108 erg · s�1· cm�2, and the error adopted in
the rest of the study on [Fe/H] is 0.1 dex. We adopt a minimum of 0.1 dex for the error in log(g) (see Sect. 3.1).

HD ✓UD ± �✓UD µ� ✓LD ± �✓LD(%) �2
red

3651 0.687 ± 0.007 0.537 0.722 ± 0.007 (0.97) 0.97
9826 1.119 ± 0.026 0.425 1.161 ± 0.027 (2.34) 6.95
19994 0.731 ± 0.010 0.448 0.761 ± 0.011 (1.41) 0.67
75732 0.687 ± 0.011 0.561 0.724 ± 0.012 (1.64) 0.36
167042 0.998 ± 0.013 0.616 1.056 ± 0.014 (1.28) 0.30
170693 1.965 ± 0.009 0.634 2.097 ± 0.009 (0.41) 0.20
173416 0.937 ± 0.033 0.608 0.995 ± 0.034 (3.45) 0.59
185395 0.726 ± 0.007 0.355 0.749 ± 0.008 (1.01) 8.47
190360 0.596 ± 0.006 0.480 0.622 ± 0.007 (1.08) 1.00
217014 0.624 ± 0.013 0.458 0.650 ± 0.014 (2.14) 2.27
221345 1.404 ± 0.029 0.614 1.489 ± 0.032 (2.16) 2.73
1367 0.719 ± 0.013 0.505 0.754 ± 0.014 (1.84) 0.44
1671 0.582 ± 0.006 0.359 0.600 ± 0.006 (0.92) 0.42
154633 0.763 ± 0.011 0.569 0.804 ± 0.012 (1.44) 0.33
161178 0.897 ± 0.040 0.545 0.944 ± 0.043 (4.50) 1.89
168151 0.642 ± 0.014 0.386 0.664 ± 0.015 (2.20) 0.61
209369 0.601 ± 0.017 0.380 0.621 ± 0.018 (2.85) 1.72
218560 0.875 ± 0.020 0.600 0.927 ± 0.022 (2.38) 0.64

Table 5: Angular diameters of our targets (in mas). Errors in %
are given in parenthesis (see Sect. 3.2).

in [Fe/H]. Since we observed around 720 nm, we had to consider
both R and I filters (in the Johnson-Cousin system).

We first computed linear interpolations over the coe�cients
corresponding to [Fe/H] and log(g) surrounding the stellar pa-
rameters for each filter R and I and each temperature surround-
ing the initial photometric temperature (determined from Fbol)
by ±250 K. (We took the closest values to our stars available
on the tables.) Then, we averaged the resulting LD coe�cients
on the filters to have one coe�cient per temperature. Finally, we
computed linear interpolations until the derived ✓LD calculated
with the LD coe�cient converge with the values of Te↵,? and
Fbol. The final interferometric parameters are given in Table 5.
We used the final LD coe�cient to estimate the final ✓LD using
the LITpro software. Then, the final Te↵,? is directly derived
from the LD diameter and Fbol :

Te↵,? =

0
BBBB@

4 ⇥ Fbol

�SB✓2LD

1
CCCCA

0.25

, (4)

where �SB is the Stefan-Boltzmann constant.
The stellar radius is obtained by combining the LD diame-

ter and the distance d (from Hipparcos parallaxes, van Leeuwen
2007) :

R?[R�] =
✓LD[mas] ⇥ d[pc]

9.305
. (5)

To determine the errors on Te↵,? and R?, we consider that the
parameters on the righthand side of each equation are indepen-
dent random variables with Gaussian probability density func-
tions. For any quantity X, the uncertainty on its estimate is noted
�X , and the relative uncertainty �X/X is noted �̃X . Then, the
standard deviation of each parameter that we want to estimate
is given analytically to first order by a classical propagation of
errors, following the formula :

�̃T e↵,? =

q
((1/2) ⇥ �̃✓LD)2 + ((1/4) ⇥ �̃F bol)2

�̃R? =
q
�̃✓2LD + �̃

2
d ,

(6)

where �✓LD, �Fbol, and �d are the errors on the LD diameter,
bolometrix flux, and distance, respectively. Then, we calculate
the stellar luminosity L? by combining the bolometric flux and
the distance :

L? = 4⇡d2Fbol , (7)

and its error
�̃L? =

q
(2 ⇥ �̃d)2 + �̃F

2
bol . (8)

Finally, we calculate the gravitational mass Mgrav,? using log(g)
and R?

Mgrav,? =
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and its error

�̃Mgrav,? =
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The parameters and their errors are shown in Table 6.
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Stellar effective temperature
The angular diameter is also used to derive the effective temperature of stars.

CoRot-9
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P/T3 = (π2G/3) ρ★stellar parameters. In Section 2, we describe our host star target
selection and detail our data analysis, including data processing,
detrending, and Markov chain Monte Carlo (MCMC) approach to
fitting the transit model. In Section 3, we present the results of this
analysis, including the full posterior distributions of the stellar
density and LDCs. We specifically discuss the types of planet–star
systems for which this method succeeds in producing high-
precision constraints on stellar density in Section 3.3.1. We
conclude and highlight this approach’s potential to aid in the
characterization of singly transiting planets discovered by the
upcoming NASA TESS mission in Section 4.

2. Methods

2.1. How to Measure
*
S from a Transit Light Curve

Seager & Mallén-Ornelas (2003) demonstrated that the mean
stellar density ρ* can be measured from a transit light curve
without any direct measurement of the stellar mass M* or
radius R* as a result of Kepler’s third law. Figure 1 offers some
intuition about this procedure in the case of a circular orbit, and
we sketch the analytic derivation of the circular-orbit case here.

We begin with Kepler’s third law,

P a
G M M

a
GM4

, 1
p

2

2

3 3

* *Q
�

�
�

( )
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where the right-hand side assumes that M Mp *� . Dividing
and multiplying the right-hand side of this equation by the
stellar volume, R4

3
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Therefore, to measure ρ*, we need only know the orbital
period P and normalized semimajor axis a R* of a planet
orbiting the star. (In particular, neither M* nor R* is necessary

to obtain ρ*.) Both P and a R* are directly measurable from
the transit light curve: P is the interval between successive
transits, and a R* can be derived from the transit duration.
In the case of a circular orbit, a R* follows trivially from the
transit duration and P (see Figure 1):

T
R
a P

2
2

. 4*
Q

�
( )

( )

Rearrangement of this equation yields the normalized
semimajor axis a R*:
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However, in general, the eccentricity e of the transiting planet’s
orbit also influences the transit duration T. The exact solution for T
in the case of an eccentric orbit involves solving a quartic equation
in fcos , where f is the true anomaly (see Kipping 2008, 2010 for
details). However, Kipping (2010) found the following approx-
imate expression for T under the simplifying assumption that the
planet–star separation does not change during the transit:
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where ñc is the separation between the planet and star at mid-
transit in units of stellar radii.
Since e and ρ* both influence the transit duration T, it is

necessary to have a precise constraint on e in order to derive a
precise constraint on ρ* (Kipping 2010). For some planets,
such as planets with observed secondary eclipses, e is directly
measurable (e.g., Knutson et al. 2007a); for others, such as
planets on very short-period orbits that are expected to tidally
circularize quickly or planets in compact multi-planet systems,
dynamical stability constrains e to low values. For each of these
categories of planet—secondary-eclipse planets, tidally circu-
larized planets, and multi-planet systems—we may express the
existing eccentricity constraint as a Bayesian prior on e. In
Sections 2.2.1–2.2.3, we describe how we select a sample of
Kepler objects of interest (KOIs) belonging to each category
for transit modeling.
We note that, in principle, ρ* could also be measured from

the transits of planets with radial velocity–measured eccentri-
cities. However, analyzing such planets requires jointly fitting
the radial velocity curves, including accurate treatment of
stellar activity effects. This is beyond the scope of the present
study, and we defer the analysis of planets with radial velocity–
measured e to later work.
Assuming, then, that we have a strong e prior, all we must do

to measure ρ* from a transit is fit a transit model comprising 10
parameters: the transit epoch t0, the orbital period P, the impact
parameter b, the stellar density ρ*, the ratio of radii R Rp *, the
orbital eccentricity e, the argument of periastron ω, and three
coefficients of a modified nonlinear limb-darkening law
(transformed to allow for efficient sampling as described in
Kipping 2016): , ,r hB B and BR. In other words, we must explore
this 10-dimensional parameter space and find a region that
matches the Kepler transit data.
We use the transit-modeling code BATMAN (Kreidberg 2015)

to compute the light curve of a given set of 10 transit model

Figure 1. The transit duration T is equal to the stellar diameter divided by the
mean orbital velocity, which is equal to a P2Q in the case of a circular orbit.
Rearrangement of the equation in the lower panel yields the normalized
semimajor axis a R*. An analogous calculation is possible for planets on
eccentric orbits (for which orbital velocity varies with phase), provided the
eccentricity is known.
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stellar parameters. In Section 2, we describe our host star target
selection and detail our data analysis, including data processing,
detrending, and Markov chain Monte Carlo (MCMC) approach to
fitting the transit model. In Section 3, we present the results of this
analysis, including the full posterior distributions of the stellar
density and LDCs. We specifically discuss the types of planet–star
systems for which this method succeeds in producing high-
precision constraints on stellar density in Section 3.3.1. We
conclude and highlight this approach’s potential to aid in the
characterization of singly transiting planets discovered by the
upcoming NASA TESS mission in Section 4.

2. Methods

2.1. How to Measure
*
S from a Transit Light Curve

Seager & Mallén-Ornelas (2003) demonstrated that the mean
stellar density ρ* can be measured from a transit light curve
without any direct measurement of the stellar mass M* or
radius R* as a result of Kepler’s third law. Figure 1 offers some
intuition about this procedure in the case of a circular orbit, and
we sketch the analytic derivation of the circular-orbit case here.

We begin with Kepler’s third law,
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Therefore, to measure ρ*, we need only know the orbital
period P and normalized semimajor axis a R* of a planet
orbiting the star. (In particular, neither M* nor R* is necessary

to obtain ρ*.) Both P and a R* are directly measurable from
the transit light curve: P is the interval between successive
transits, and a R* can be derived from the transit duration.
In the case of a circular orbit, a R* follows trivially from the
transit duration and P (see Figure 1):
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However, in general, the eccentricity e of the transiting planet’s
orbit also influences the transit duration T. The exact solution for T
in the case of an eccentric orbit involves solving a quartic equation
in fcos , where f is the true anomaly (see Kipping 2008, 2010 for
details). However, Kipping (2010) found the following approx-
imate expression for T under the simplifying assumption that the
planet–star separation does not change during the transit:
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where ñc is the separation between the planet and star at mid-
transit in units of stellar radii.
Since e and ρ* both influence the transit duration T, it is

necessary to have a precise constraint on e in order to derive a
precise constraint on ρ* (Kipping 2010). For some planets,
such as planets with observed secondary eclipses, e is directly
measurable (e.g., Knutson et al. 2007a); for others, such as
planets on very short-period orbits that are expected to tidally
circularize quickly or planets in compact multi-planet systems,
dynamical stability constrains e to low values. For each of these
categories of planet—secondary-eclipse planets, tidally circu-
larized planets, and multi-planet systems—we may express the
existing eccentricity constraint as a Bayesian prior on e. In
Sections 2.2.1–2.2.3, we describe how we select a sample of
Kepler objects of interest (KOIs) belonging to each category
for transit modeling.
We note that, in principle, ρ* could also be measured from

the transits of planets with radial velocity–measured eccentri-
cities. However, analyzing such planets requires jointly fitting
the radial velocity curves, including accurate treatment of
stellar activity effects. This is beyond the scope of the present
study, and we defer the analysis of planets with radial velocity–
measured e to later work.
Assuming, then, that we have a strong e prior, all we must do

to measure ρ* from a transit is fit a transit model comprising 10
parameters: the transit epoch t0, the orbital period P, the impact
parameter b, the stellar density ρ*, the ratio of radii R Rp *, the
orbital eccentricity e, the argument of periastron ω, and three
coefficients of a modified nonlinear limb-darkening law
(transformed to allow for efficient sampling as described in
Kipping 2016): , ,r hB B and BR. In other words, we must explore
this 10-dimensional parameter space and find a region that
matches the Kepler transit data.
We use the transit-modeling code BATMAN (Kreidberg 2015)

to compute the light curve of a given set of 10 transit model

Figure 1. The transit duration T is equal to the stellar diameter divided by the
mean orbital velocity, which is equal to a P2Q in the case of a circular orbit.
Rearrangement of the equation in the lower panel yields the normalized
semimajor axis a R*. An analogous calculation is possible for planets on
eccentric orbits (for which orbital velocity varies with phase), provided the
eccentricity is known.
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3rd Kepler law

Measure of stellar density ρ★ : 
(Maxted et al. 2015, Seager & Mallén-Ornelas 2003)

Kepler’s third law, assuming a circular orbit, whereG is the universal gravitational constant andMp the planet mass,

P2 ¼ 4!2a3

GðM# þMpÞ
; ð4Þ

and the stellar mass-radius relation,

R# ¼ kMx
# ; ð5Þ

where k is a constant coefficient for each stellar sequence (main sequence, giants, etc.) and x describes the power law of the
sequence (e.g., x ’ 0:8 for F–Kmain-sequence stars; Cox 2000).

3.2. Analytical Solution

3.2.1. Four Parameters Derivable fromObservables

We ultimately wish to solve for the five unknown parameters M*, R*, a, i, and Rp from the five equations above. It is first
useful to note that four combinations of physical parameters can be found directly from the observables (DF, tT, tF, and P)
using only the first four equations in x 3.1 (the three transit geometry equations and Kepler’s third law with Mp5M#); this
avoids any uncertainty from the stellar mass-radius relation.

The four combinations of parameters are as follows: the planet-star radius ratio, which trivially follows from equation (1),
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DF

p
; ð6Þ

the impact parameter b, defined as the projected distance between the planet and star centers during midtransit in units of R*
(see Fig. 1), and which can be derived directly from the transit shape equation (2), together with equation (6),

b & a

R#
cos i ¼

"
1'

ffiffiffiffiffiffiffi
DF

p #2 ' sin2 tF!=Pð Þ= sin2 tT!=Pð Þ
$ %"

1þ
ffiffiffiffiffiffiffi
DF

p #2

1' sin2 tF!=Pð Þ= sin2 tT!=Pð Þ
$ %

( )1=2

; ð7Þ

the ratio a/R*, which can be derived directly from the transit duration equation (3),
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and the stellar density "*, which can be derived from the above equation for a/R* and Kepler’s third law with Mp5M# (eq.
[4]),
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The parameters b and a/R* are dimensionless. The density can be written in units of "( by substituting 4!2=G ¼ 365:252=
2153 day2 M(=R3

(.
It is interesting to consider the geometrical and physical origin of these combinations of parameters. The impact parameter

b depends almost entirely on the transit shape (parameterized by tF/tT) and the ratio of planet and star sizes [ DFð Þ1=2]. To a
lesser extent b depends mildly on the period (see x 3.3.2). The term a/R* is the ratio of orbital semimajor axis to planet radius;
to first order it is related to the ratio of transit duration to total period. The term a/R* is also dependent on the impact parame-
ter b and planet-star size ratio because these parameters affect the transit duration. The stellar density, "*, comes fromKepler’s
third law and the transit duration tT; Kepler’s third law describes how much mass is enclosed inside the planet’s orbit, and the
stellar radius is described by the transit duration with a physical scale set by Kepler’s third law. Again, "* is also dependent on
the impact parameter b and the planet-star size ratio because these parameters affect the transit duration.

3.2.2. The Five Physical Parameters

The five physical parametersR*,M*, i, a, andRp can be derived from the above solution forRp/R*, b, a/R*, and "* by using
one additional equation: the stellar mass-radius relation (eq. [5]). To derive M*, consider equation (9) together with the
stellar mass-radius relation in the form "#="( & M#=M( R#=R(ð Þ'3¼ M#=M(ð Þ1'3x1=k3:

M#
M(

¼ k3
"#
"(

& '1= 1'3xð Þ
: ð10Þ

The stellar radius can be derived from the stellar mass by the stellar mass-radius relation, or from the density directly,
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"#
"(

& 'x=ð1'3xÞ
; ð11Þ
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3. THE EQUATIONS AND SOLUTION FOR A LIGHT CURVE WITH TWO OR MORE TRANSITS

3.1. The General System of Equations

There are five equations that completely describe the planet transit light curve. The first three equations (eqs. [1]–[3])
describe the geometry of the transit in terms of transit depth, transit shape, and transit duration (see Fig. 1). For a planet
transit light curve that is due to two spheres passing in front of each other, the geometry is relatively straightforward (see
Sackett 1999 for a derivation of the transit duration eq. [3]). Here we parameterize the transit shape by both tT, the total transit
duration (first to fourth contact), and tF, the duration of the transit completely inside ingress and egress (second to third con-
tact). The three geometrical equations that describe the transit light curve depend on four observables: the period P, the transit
depth DF, tF, and tT. See Figure 1 for an illustrative definition of DF, tF, and tT. In addition to the three geometrical equations,
there are two physical equations (eqs. [4] and [5]), Kepler’s third law and the stellar mass-radius relation. It is these physical
equations that break the degeneracy of the mathematical description of two spheres passing in front of each other, by setting a
physical scale. It is this physical scale, together with the geometrical description, that allows the unique solution.

The equations are as follows: the transit depth, DF, with F defined as the total observed flux,

DF ! Fno transit " Ftransit

Fno transit
¼
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; ð1Þ

the transit shape, described by the ratio of the duration of the ‘‘ flat part ’’ of the transit (tF) to the total transit duration (tT),
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the total transit duration,
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Fig. 1.—Definition of transit light-curve observables. Two schematic light curves are shown on the bottom (solid and dotted lines), and the corresponding
geometry of the star and planet is shown on the top. Indicated on the solid light curve are the transit depth DF, the total transit duration tT, and the transit
duration between ingress and egress tF (i.e., the ‘‘ flat part ’’ of the transit light curve when the planet is fully superimposed on the parent star). First, second,
third, and fourth contacts are noted for a planet moving from left to right. Also defined areR*,Rp, and impact parameter b corresponding to orbital inclination
i. Different impact parameters b (or different i) will result in different transit shapes, as shown by the transits corresponding to the solid and dotted lines.
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P/T3 = (π2G/3) ρ★stellar parameters. In Section 2, we describe our host star target
selection and detail our data analysis, including data processing,
detrending, and Markov chain Monte Carlo (MCMC) approach to
fitting the transit model. In Section 3, we present the results of this
analysis, including the full posterior distributions of the stellar
density and LDCs. We specifically discuss the types of planet–star
systems for which this method succeeds in producing high-
precision constraints on stellar density in Section 3.3.1. We
conclude and highlight this approach’s potential to aid in the
characterization of singly transiting planets discovered by the
upcoming NASA TESS mission in Section 4.

2. Methods

2.1. How to Measure
*
S from a Transit Light Curve

Seager & Mallén-Ornelas (2003) demonstrated that the mean
stellar density ρ* can be measured from a transit light curve
without any direct measurement of the stellar mass M* or
radius R* as a result of Kepler’s third law. Figure 1 offers some
intuition about this procedure in the case of a circular orbit, and
we sketch the analytic derivation of the circular-orbit case here.

We begin with Kepler’s third law,
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Therefore, to measure ρ*, we need only know the orbital
period P and normalized semimajor axis a R* of a planet
orbiting the star. (In particular, neither M* nor R* is necessary

to obtain ρ*.) Both P and a R* are directly measurable from
the transit light curve: P is the interval between successive
transits, and a R* can be derived from the transit duration.
In the case of a circular orbit, a R* follows trivially from the
transit duration and P (see Figure 1):
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Rearrangement of this equation yields the normalized
semimajor axis a R*:
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However, in general, the eccentricity e of the transiting planet’s
orbit also influences the transit duration T. The exact solution for T
in the case of an eccentric orbit involves solving a quartic equation
in fcos , where f is the true anomaly (see Kipping 2008, 2010 for
details). However, Kipping (2010) found the following approx-
imate expression for T under the simplifying assumption that the
planet–star separation does not change during the transit:
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where ñc is the separation between the planet and star at mid-
transit in units of stellar radii.
Since e and ρ* both influence the transit duration T, it is

necessary to have a precise constraint on e in order to derive a
precise constraint on ρ* (Kipping 2010). For some planets,
such as planets with observed secondary eclipses, e is directly
measurable (e.g., Knutson et al. 2007a); for others, such as
planets on very short-period orbits that are expected to tidally
circularize quickly or planets in compact multi-planet systems,
dynamical stability constrains e to low values. For each of these
categories of planet—secondary-eclipse planets, tidally circu-
larized planets, and multi-planet systems—we may express the
existing eccentricity constraint as a Bayesian prior on e. In
Sections 2.2.1–2.2.3, we describe how we select a sample of
Kepler objects of interest (KOIs) belonging to each category
for transit modeling.
We note that, in principle, ρ* could also be measured from

the transits of planets with radial velocity–measured eccentri-
cities. However, analyzing such planets requires jointly fitting
the radial velocity curves, including accurate treatment of
stellar activity effects. This is beyond the scope of the present
study, and we defer the analysis of planets with radial velocity–
measured e to later work.
Assuming, then, that we have a strong e prior, all we must do

to measure ρ* from a transit is fit a transit model comprising 10
parameters: the transit epoch t0, the orbital period P, the impact
parameter b, the stellar density ρ*, the ratio of radii R Rp *, the
orbital eccentricity e, the argument of periastron ω, and three
coefficients of a modified nonlinear limb-darkening law
(transformed to allow for efficient sampling as described in
Kipping 2016): , ,r hB B and BR. In other words, we must explore
this 10-dimensional parameter space and find a region that
matches the Kepler transit data.
We use the transit-modeling code BATMAN (Kreidberg 2015)

to compute the light curve of a given set of 10 transit model

Figure 1. The transit duration T is equal to the stellar diameter divided by the
mean orbital velocity, which is equal to a P2Q in the case of a circular orbit.
Rearrangement of the equation in the lower panel yields the normalized
semimajor axis a R*. An analogous calculation is possible for planets on
eccentric orbits (for which orbital velocity varies with phase), provided the
eccentricity is known.
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stellar parameters. In Section 2, we describe our host star target
selection and detail our data analysis, including data processing,
detrending, and Markov chain Monte Carlo (MCMC) approach to
fitting the transit model. In Section 3, we present the results of this
analysis, including the full posterior distributions of the stellar
density and LDCs. We specifically discuss the types of planet–star
systems for which this method succeeds in producing high-
precision constraints on stellar density in Section 3.3.1. We
conclude and highlight this approach’s potential to aid in the
characterization of singly transiting planets discovered by the
upcoming NASA TESS mission in Section 4.

2. Methods

2.1. How to Measure
*
S from a Transit Light Curve

Seager & Mallén-Ornelas (2003) demonstrated that the mean
stellar density ρ* can be measured from a transit light curve
without any direct measurement of the stellar mass M* or
radius R* as a result of Kepler’s third law. Figure 1 offers some
intuition about this procedure in the case of a circular orbit, and
we sketch the analytic derivation of the circular-orbit case here.

We begin with Kepler’s third law,
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Therefore, to measure ρ*, we need only know the orbital
period P and normalized semimajor axis a R* of a planet
orbiting the star. (In particular, neither M* nor R* is necessary

to obtain ρ*.) Both P and a R* are directly measurable from
the transit light curve: P is the interval between successive
transits, and a R* can be derived from the transit duration.
In the case of a circular orbit, a R* follows trivially from the
transit duration and P (see Figure 1):
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However, in general, the eccentricity e of the transiting planet’s
orbit also influences the transit duration T. The exact solution for T
in the case of an eccentric orbit involves solving a quartic equation
in fcos , where f is the true anomaly (see Kipping 2008, 2010 for
details). However, Kipping (2010) found the following approx-
imate expression for T under the simplifying assumption that the
planet–star separation does not change during the transit:
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where ñc is the separation between the planet and star at mid-
transit in units of stellar radii.
Since e and ρ* both influence the transit duration T, it is

necessary to have a precise constraint on e in order to derive a
precise constraint on ρ* (Kipping 2010). For some planets,
such as planets with observed secondary eclipses, e is directly
measurable (e.g., Knutson et al. 2007a); for others, such as
planets on very short-period orbits that are expected to tidally
circularize quickly or planets in compact multi-planet systems,
dynamical stability constrains e to low values. For each of these
categories of planet—secondary-eclipse planets, tidally circu-
larized planets, and multi-planet systems—we may express the
existing eccentricity constraint as a Bayesian prior on e. In
Sections 2.2.1–2.2.3, we describe how we select a sample of
Kepler objects of interest (KOIs) belonging to each category
for transit modeling.
We note that, in principle, ρ* could also be measured from

the transits of planets with radial velocity–measured eccentri-
cities. However, analyzing such planets requires jointly fitting
the radial velocity curves, including accurate treatment of
stellar activity effects. This is beyond the scope of the present
study, and we defer the analysis of planets with radial velocity–
measured e to later work.
Assuming, then, that we have a strong e prior, all we must do

to measure ρ* from a transit is fit a transit model comprising 10
parameters: the transit epoch t0, the orbital period P, the impact
parameter b, the stellar density ρ*, the ratio of radii R Rp *, the
orbital eccentricity e, the argument of periastron ω, and three
coefficients of a modified nonlinear limb-darkening law
(transformed to allow for efficient sampling as described in
Kipping 2016): , ,r hB B and BR. In other words, we must explore
this 10-dimensional parameter space and find a region that
matches the Kepler transit data.
We use the transit-modeling code BATMAN (Kreidberg 2015)

to compute the light curve of a given set of 10 transit model

Figure 1. The transit duration T is equal to the stellar diameter divided by the
mean orbital velocity, which is equal to a P2Q in the case of a circular orbit.
Rearrangement of the equation in the lower panel yields the normalized
semimajor axis a R*. An analogous calculation is possible for planets on
eccentric orbits (for which orbital velocity varies with phase), provided the
eccentricity is known.

2

The Astronomical Journal, 154:228 (15pp), 2017 December Sandford & Kipping

3rd Kepler law

Measure of stellar density ρ★ : 
(Maxted et al. 2015, Seager & Mallén-Ornelas 2003)

Interferometry

M★=(4π/3)R★3ρ★Measure of stellar mass

Kepler’s third law, assuming a circular orbit, whereG is the universal gravitational constant andMp the planet mass,

P2 ¼ 4!2a3

GðM# þMpÞ
; ð4Þ

and the stellar mass-radius relation,

R# ¼ kMx
# ; ð5Þ

where k is a constant coefficient for each stellar sequence (main sequence, giants, etc.) and x describes the power law of the
sequence (e.g., x ’ 0:8 for F–Kmain-sequence stars; Cox 2000).

3.2. Analytical Solution

3.2.1. Four Parameters Derivable fromObservables

We ultimately wish to solve for the five unknown parameters M*, R*, a, i, and Rp from the five equations above. It is first
useful to note that four combinations of physical parameters can be found directly from the observables (DF, tT, tF, and P)
using only the first four equations in x 3.1 (the three transit geometry equations and Kepler’s third law with Mp5M#); this
avoids any uncertainty from the stellar mass-radius relation.

The four combinations of parameters are as follows: the planet-star radius ratio, which trivially follows from equation (1),
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p
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the impact parameter b, defined as the projected distance between the planet and star centers during midtransit in units of R*
(see Fig. 1), and which can be derived directly from the transit shape equation (2), together with equation (6),

b & a

R#
cos i ¼

"
1'

ffiffiffiffiffiffiffi
DF

p #2 ' sin2 tF!=Pð Þ= sin2 tT!=Pð Þ
$ %"

1þ
ffiffiffiffiffiffiffi
DF

p #2

1' sin2 tF!=Pð Þ= sin2 tT!=Pð Þ
$ %

( )1=2

; ð7Þ

the ratio a/R*, which can be derived directly from the transit duration equation (3),
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and the stellar density "*, which can be derived from the above equation for a/R* and Kepler’s third law with Mp5M# (eq.
[4]),
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The parameters b and a/R* are dimensionless. The density can be written in units of "( by substituting 4!2=G ¼ 365:252=
2153 day2 M(=R3

(.
It is interesting to consider the geometrical and physical origin of these combinations of parameters. The impact parameter

b depends almost entirely on the transit shape (parameterized by tF/tT) and the ratio of planet and star sizes [ DFð Þ1=2]. To a
lesser extent b depends mildly on the period (see x 3.3.2). The term a/R* is the ratio of orbital semimajor axis to planet radius;
to first order it is related to the ratio of transit duration to total period. The term a/R* is also dependent on the impact parame-
ter b and planet-star size ratio because these parameters affect the transit duration. The stellar density, "*, comes fromKepler’s
third law and the transit duration tT; Kepler’s third law describes how much mass is enclosed inside the planet’s orbit, and the
stellar radius is described by the transit duration with a physical scale set by Kepler’s third law. Again, "* is also dependent on
the impact parameter b and the planet-star size ratio because these parameters affect the transit duration.

3.2.2. The Five Physical Parameters

The five physical parametersR*,M*, i, a, andRp can be derived from the above solution forRp/R*, b, a/R*, and "* by using
one additional equation: the stellar mass-radius relation (eq. [5]). To derive M*, consider equation (9) together with the
stellar mass-radius relation in the form "#="( & M#=M( R#=R(ð Þ'3¼ M#=M(ð Þ1'3x1=k3:
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The stellar radius can be derived from the stellar mass by the stellar mass-radius relation, or from the density directly,
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3. THE EQUATIONS AND SOLUTION FOR A LIGHT CURVE WITH TWO OR MORE TRANSITS

3.1. The General System of Equations

There are five equations that completely describe the planet transit light curve. The first three equations (eqs. [1]–[3])
describe the geometry of the transit in terms of transit depth, transit shape, and transit duration (see Fig. 1). For a planet
transit light curve that is due to two spheres passing in front of each other, the geometry is relatively straightforward (see
Sackett 1999 for a derivation of the transit duration eq. [3]). Here we parameterize the transit shape by both tT, the total transit
duration (first to fourth contact), and tF, the duration of the transit completely inside ingress and egress (second to third con-
tact). The three geometrical equations that describe the transit light curve depend on four observables: the period P, the transit
depth DF, tF, and tT. See Figure 1 for an illustrative definition of DF, tF, and tT. In addition to the three geometrical equations,
there are two physical equations (eqs. [4] and [5]), Kepler’s third law and the stellar mass-radius relation. It is these physical
equations that break the degeneracy of the mathematical description of two spheres passing in front of each other, by setting a
physical scale. It is this physical scale, together with the geometrical description, that allows the unique solution.

The equations are as follows: the transit depth, DF, with F defined as the total observed flux,

DF ! Fno transit " Ftransit

Fno transit
¼

Rp

R$

! "2

; ð1Þ

the transit shape, described by the ratio of the duration of the ‘‘ flat part ’’ of the transit (tF) to the total transit duration (tT),

sinðtF!=PÞ
sinðtT!=PÞ

¼
#
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$ %& '2" a=R$ð Þ cos i½ (2
(1=2

#
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the total transit duration,

tT ¼ P

!
arcsin
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( )1=2
0

@

1

A ; ð3Þ
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Fig. 1.—Definition of transit light-curve observables. Two schematic light curves are shown on the bottom (solid and dotted lines), and the corresponding
geometry of the star and planet is shown on the top. Indicated on the solid light curve are the transit depth DF, the total transit duration tT, and the transit
duration between ingress and egress tF (i.e., the ‘‘ flat part ’’ of the transit light curve when the planet is fully superimposed on the parent star). First, second,
third, and fourth contacts are noted for a planet moving from left to right. Also defined areR*,Rp, and impact parameter b corresponding to orbital inclination
i. Different impact parameters b (or different i) will result in different transit shapes, as shown by the transits corresponding to the solid and dotted lines.
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limb-darkening coe�cients were estimated in the SDSS r’
band (centered at 612.2 nm with a width of 115 nm) using the
EXOFAST calculator 1 (Eastman et al. 2013) and the stellar
temperature, gravity, and metallicity from Table 1. We varied
these parameters within their 1� uncertainties to determine
uncertainties on u1 and u2 (found to be dominated by the
error on the metallicity). The mean and errors so derived (u1
= 0.545±0.008 et u2 = 0.186±0.004) were used as Gaussian
priors in the MCMC. We initialized 300 walkers started at ran-
dom points in the parameter space close to the preliminary fit.
We ran the walkers for 7000 steps and removed a conservative
3000 steps as burn-in. We checked that all walkers converged
to the same solution, before thinning their chains using the
maximum correlation length of all parameters. The final
thinned and merged chain contains about 4000 independent
samples. We set the best-fit values for the model parameters
to the medians of the posterior probability distributions and
evaluated their 1� uncertainties by taking limits at 34.15% on
either side of the median. Results are given in Table 4. The
best-fit transit light curve is shown in Fig. 10. Taking into
account the uncertainty on the stellar radius, the corresponding
planet-to-star radius ratio Rp/R? = 0.0182±0.0002 corresponds
to an optical radius Rp = 1.875±0.029 REarth. We combined the
posterior probability distributions obtained for the mass and
radius of the planet to derive that of its density, and measure ⇢p
= 6.66+0.43

�0.40 g cm�3.

Fig. 10 STIS transit light curve of 55 Cnc e in the visible band.
Fluxes have been corrected for the breathing and long-term
variations in Visit ASTIS (blue), BSTIS (green), and CSTIS (or-
ange). Black points show binned exposures. The red line is the
best-fit transit light curve.

4.3. Analysis of APT transit light curve

The transit of 55 Cnc e was detected from the ground by de
Mooij et al. (2014), using di↵erential photometry obtained
with ALFOSC on the 2.5-m Nordic Optical Telescope. They

1 http://astroutils.astronomy.ohio-state.edu/
exofast/limbdark.shtml

measured a transit depth of 0.0198+0.0013
�0.0014 in the Johnson

BVR bands, which is consistent with our STIS measurement.
We searched for the transit in our normalized APT di↵er-
ential photometry (Sect. 2.2) using the EXOFAST model
described in Sect. 4.2. In a first step, we fitted the transit
depth, transit epoch, and orbital period and fixed all other
properties to the values given in Table 1 and Table 4. The
average Strömgren b and y pass bands (centered at 467 and
547Å , respectively) overlap with the STIS spectral range,
and we consider it reasonable to use the limb-darkening
parameters derived in Sect. 4.2 given the precision of the
APT data. Errors on datapoint were set to the dispersion of
the residuals from a preliminary best-fit. We found the transit
at a period P = 0.736547±2⇥10�6 days and epoch T APT

0 =
2 457063.201±0.007 BJDTDB, in good agreement with the
results from space-borne photometry (Table 4). In a second
step we thus fitted the transit depth alone (Fig. 11), all other
properties being fixed to their values in Table 4. We obtained
Rp/R⇤ = 0.0228±0.0023, which is marginally larger (2�) than
the STIS value derived in Sect. 4.2.

Fig. 11 APT transit light curve of 55 Cnc e in the Strömgren b
and y bands. Black points show binned exposures. The red line
is the best-fit transit light curve.

5. Interior characterization of 55 Cnc e

Successive measurements of the mass and radius of 55 Cnc e
have been used to constrain its interior composition, ranging
from a planet with a high-mean-molecular-weight atmosphere
(Demory et al. 2011) to a planet with no atmosphere and a
silicate-rich (Winn et al. 2011) or carbon-rich (Madhusudhan
et al. 2012) interior. Our new estimates of planetary radius
and mass (Table 4) are consistent with previous measurements
by Nelson et al. (2014) and Demory et al. (2016a) (Rp =
1.91±0.08; Mp = 8.08±0.31 MEarth), and their improved pre-
cision allow us carry further the interior characterization of
55 Cnc e. We use the generalized Bayesian inference analysis
of Dorn et al. (2017b) to rigorously quantify interior degener-
acy. We investigate two di↵erent scenarios: a dry interior that
is comprised of gas and rock only, and a wet scenario in which
a non-gaseous water layer is present underneath the gas layer.

55 Cnc: ρ★ = 1.079 ± 0.005 ρ⦿

22

Bourrier et al. (2018)



Stellar density and mass

→ Strong correlation: 0.85! 
(Crida+ 2018a) 
→ Different M★ than von Braun+ 2011 
based on isochrones.

From the PDF of R★ and ρ★, analytic 
joint PDF of M★ - R★  .

Taking the values of R★ and M★ 
from Ligi+ 2016, one gets the 
large, wrong blue ellipse.

10 V. Bourrier et al.: The 55 Cnc system reassessed

limb-darkening coe�cients were estimated in the SDSS r’
band (centered at 612.2 nm with a width of 115 nm) using the
EXOFAST calculator 1 (Eastman et al. 2013) and the stellar
temperature, gravity, and metallicity from Table 1. We varied
these parameters within their 1� uncertainties to determine
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Mooij et al. (2014), using di↵erential photometry obtained
with ALFOSC on the 2.5-m Nordic Optical Telescope. They
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measured a transit depth of 0.0198+0.0013
�0.0014 in the Johnson

BVR bands, which is consistent with our STIS measurement.
We searched for the transit in our normalized APT di↵er-
ential photometry (Sect. 2.2) using the EXOFAST model
described in Sect. 4.2. In a first step, we fitted the transit
depth, transit epoch, and orbital period and fixed all other
properties to the values given in Table 1 and Table 4. The
average Strömgren b and y pass bands (centered at 467 and
547Å , respectively) overlap with the STIS spectral range,
and we consider it reasonable to use the limb-darkening
parameters derived in Sect. 4.2 given the precision of the
APT data. Errors on datapoint were set to the dispersion of
the residuals from a preliminary best-fit. We found the transit
at a period P = 0.736547±2⇥10�6 days and epoch T APT

0 =
2 457063.201±0.007 BJDTDB, in good agreement with the
results from space-borne photometry (Table 4). In a second
step we thus fitted the transit depth alone (Fig. 11), all other
properties being fixed to their values in Table 4. We obtained
Rp/R⇤ = 0.0228±0.0023, which is marginally larger (2�) than
the STIS value derived in Sect. 4.2.

Fig. 11 APT transit light curve of 55 Cnc e in the Strömgren b
and y bands. Black points show binned exposures. The red line
is the best-fit transit light curve.

5. Interior characterization of 55 Cnc e

Successive measurements of the mass and radius of 55 Cnc e
have been used to constrain its interior composition, ranging
from a planet with a high-mean-molecular-weight atmosphere
(Demory et al. 2011) to a planet with no atmosphere and a
silicate-rich (Winn et al. 2011) or carbon-rich (Madhusudhan
et al. 2012) interior. Our new estimates of planetary radius
and mass (Table 4) are consistent with previous measurements
by Nelson et al. (2014) and Demory et al. (2016a) (Rp =
1.91±0.08; Mp = 8.08±0.31 MEarth), and their improved pre-
cision allow us carry further the interior characterization of
55 Cnc e. We use the generalized Bayesian inference analysis
of Dorn et al. (2017b) to rigorously quantify interior degener-
acy. We investigate two di↵erent scenarios: a dry interior that
is comprised of gas and rock only, and a wet scenario in which
a non-gaseous water layer is present underneath the gas layer.
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Blue: our first estimate, with Hipparcos 
parallax + poor transit light-curve. 
Correlation: 0.3. 
→ ρp =1.06±0.13 ρ⊕  

Black: our second estimate, with Gaia 
parallax + refined HST light-curve and 
radial velocity.  
Correlation: 0.54. 
→ ρp =1.164±0.062 ρ⊕ = 6421±342 kg.m-3 

Crida+ 2018a,b

R. Ligi: Stellar and planetary properties of HD 219134.

conditions from MARCS model atmospheres), and the galactic
value �Y/�Z = 2 derived by Casagrande et al. (2007), which
is also rather close to the Kepler Legacy seismic mean value
(�Y/�Z)seism. This particular model has M? = 0.755±0.040 M�
and an age of 9.3 Gyr. Although this mass estimate is higher than
the mass we derived from interferometry and transit by ⇠ 8%,
the interval of solutions is consistent with our uncertainties. Sim-
ilarly, our radius and density are consistent with those derived
from the model (0.727± 0.017 R�, 1.96± 0.22 ⇢�, respectively).
We point out that pushing the �Y/�Z value from 2. to 3. would
induce a change of mass from 0.755 to 0.719 M�, i.e. closer to
the interferometric measure, but with a change in age from 9.3
to 13.8 Gyr, i.e. the age of the Universe; in our opinion this in-
dicates that �Y/�Z values that are too high are not realistic for
this star.

We point out that, as is well-known in particular in the case of
low-mass stars, the ages of stars are very poorly estimated when
only the H-R diagram parameters and metallicity are known be-
cause of degeneracies in the stellar models (see e.g. Lebreton
et al. 2014; Ligi et al. 2016). Furthermore, other values of the
classical stellar parameters of HD 219134 have been reported in
the literature. To see how these reported values can modify our
results we optimised stellar models on the basis of the Folsom
et al. (2018) results on Te↵ and [Fe/H] and on L? inferred from
the SIMBAD Hipparcos V-magnitude. We obtained a similar
range of masses 0.76�0.79M�, while the models systematically
point towards higher ages 10.2�13.8 Gyr, which is mainly due to
the smaller Te↵ (4756 ± 86K) derived by Folsom et al. (2018). It
is also worth pointing out that, as noted by Johnson et al. (2016),
the very high ages inferred from stellar models commonly found
in the literature for HD 219134 seem to be in conflict with ages
from activity which, although not very precise, span the range
⇡ 3 � 9 Gyr7.

4. Planetary parameters and composition of the

transiting exoplanets

The precise and accurate stellar parameters that we have deter-
mined allow us to infer the parameters of the transiting exoplan-
ets of the system. It is then possible to derive their internal com-
position using an inference scheme, and to verify if they stand in
a dynamical point of view.

4.1. Radius, density, and mass of the two transiting
exoplanets

The two planets HD 219134 b and c transit their host star, and
we can thus derive their properties. We computed the planetary
radius Rp and mass Mp of each planet starting from the PDF of
the stellar mass and radius. As explained by Crida et al. (2018b)
concerning 55 Cnc e, for any Mp and M?, we can derive the as-
sociated semi-amplitude of the RV signal K following Kepler’s
law, and for any pair of Rp and R?, we can derive the associ-
ated transit depth �F. We took the �F, K, and the period P from
Gillon et al. (2017) to calculate the PDF of the planetary mass
and radius following the formula (see Sect. 3.1 of Crida et al.

7 We estimated this age range from the empirical relation relating the
CaII H & K emission index R

0
HK and age derived by Mamajek & Hil-

lenbrand (2008), with the value of R
0
HK measured by Boro Saikia et al.

(2018).

Fig. 4: Joint likelihood of the planetary mass and radius for
planet b (green long-dashed line) and planet c (yellow solid line).
The 9 contour lines separate 10 equal-sized intervals between 0
and the maximum of fp(Mp,Rp). The dashed lines show the iso-
densities corresponding to the mean densities of planets b and
c.

2018b, for more details) :
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From this joint PDF, we compute the densities of both transiting
exoplanets taking into account the correlation between Rp and
Mp (Fig. 4).

The new values of the planetary parameters are given in
Tab. 4. We also added revised minimum masses and semi-major
axes of planets f and d using Gillon et al. (2017) orbital solu-
tions, as they are confirmed by several independent detections.
The radii of planets b and c are 1.500 ± 0.057 and 1.415 ± 0.049
R�, respectively. Because we find that the star is smaller than
initially thought, the two planets appear smaller as well; Gillon
et al. (2017) give Rp = 1.602 ± 0.055 and 1.511 ± 0.047 R�, and
Mp = 4.74 ± 0.19 and 4.36 ± 0.22 M�, for planets b and c, re-
spectively. This enforces the idea that the two planets lie in the
super-Earth part of the distribution of exoplanetary radii set by
Fulton et al. (2017).

Even more interestingly, planet c presents a higher density
than planet b, whereas it has smaller mass and radius. From the
values in Tab. 4, we get ⇢b/⇢c = 0.901 ± 0.157 assuming ⇢b and
⇢c to be independent variables. But ⇢b and ⇢c are slightly corre-
lated as they both depend on the stellar parameters. Estimating
directly the ratio, the stellar parameters simplify out to

⇢b

⇢c

=
Mb/R3

b

Mc/R3
c

=

 
Pb

Pc

!1/3  
�Fc

�Fb

!3/2  
Kb

Kc

!
= 0.905 ± 0.131 , (6)

where Pb and Pc are the orbital periods of the planets; we used a
standard propagation of error. This is a larger di↵erence than be-
tween the Earth and Venus (whose density is 0.944 ⇢�). A better
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Table 6. Prior ranges for interior parameters.

Parameter Prior range Distribution

Core radius rcore (0.01–1) rcore+mantle Uniform in r
3
core

Fe/Simantle 0 – Fe/Sistar Uniform
Mg/Simantle Mg/Sistar Gaussian
fmantle 0.–0.2 Uniform
Size of rocky interior rcore+mantle (0.01–1) Rp Uniform in r

3
core+mantle

Pressure imposed by gas envelope Penv 20 mbar–100 bar Uniform in log-scale
Temperature of gas envelope ↵ 0.5–1 Uniform
Mean molecular weight of gas envelope µ 16–50 g mol�1 Uniform

where genv and Tenv are gravity at the bottom of the atmosphere
and mean atmospheric temperature, respectively. The quantity
R
⇤ is the universal gas constant (8.3144598 J mol�1 K�1) and µ

the mean molecular weight. The mass of the atmosphere menv is
directly related to the pressure Penv as

menv = 4⇡Penv
(Rp � denv)2

genv
, (9)

where Rp � denv is the radius at the bottom of the atmosphere.
The atmosphere’s constant temperature is defined as

Tenv =↵Te↵

r
R?

2a
, (10)

where a is the semi-major axis. The factor ↵ accounts for pos-
sible cooling and warming of the atmosphere and can vary
between 0.5 and 1, which is equivalent to the observed range of
albedos among solar system bodies (0.05 for asteroids up to 0.96
for Eris). The upper limit of 1 is verified against the estimated
↵max (see Appendix A in Dorn et al. 2017), which takes possible
greenhouse warming into account.

4.2.2. Inference results

Figure 5 summarises the interior estimates. Both planets have
mantle compositions and core sizes that fit bulk density and the
stellar abundance constraint. The core fraction of both planets
is close to that of Venus and Earth ((rcore/rcore+mantle)� = 0.53),
which validates their denomination as super-Earths. Compared
to planet c, the lower density of 10% of planet b is associated
with a slightly smaller core (by 10%) and higher fmantle (by 45%),
which indicates that a significantly stronger reduction of mantle
density is plausible given the data. The estimates of fmantle for
planet b and c are 0.073+0.06

�0.05 and 0.05+0.06
�0.04, respectively. Factors

of fmantle up to 0.25 can be associated with high melt fractions
(for Earth-sized planets). Similar values can be achieved when
the mantle composition is enriched by very refractory elements
(i.e. Al, Ca).

It should be noted that differences between the interiors are
small, since uncertainties on bulk densities are relatively large.
The data allow for no difference in bulk densities. However, a
significant (more than 5%) difference exists with 70% probabil-
ity. In this work, we used an interior model that allows us to
quantify any possible difference in the rocky interiors of both
planets. We assumed that any volatile layer is limited to a 100 bar
atmosphere (similar to Venus) at maximum. Further arguments
are necessary to evaluate whether a difference between the rocky
interiors, specifically the mantle densities, can exist.

Nonetheless, because Bower et al. (2019) demonstrated that
for Earth-sized planets a fully molten mantle is 25% less dense
than a solidified mantle, this possibility must be considered,
and it is interesting to investigate whether planet b could be
less dense because partially molten. Heating by irradiation from
the host star would not be enough; the black-body equilib-
rium temperature for this planet is 1036 K. Nevertheless, in the
next subsection, we discuss a possible dynamical origin for the
possible difference between HD 219134 b and c.

4.3. Possible origin of a partial mantle melt for HD 219134 b

Large melt fractions may be sustained on planet b by tidal
heating. In the case of synchronous rotation with spin-orbit
alignment, which is likely for close-in planets such as HD 219134
b, tidal dissipation acts only on planets on eccentric orbits around
the star. The power is given by (see e.g. Lainey et al. 2009)

Ė =
21
2

k2

Q

(!Rp)5

G
e

2, (11)

where k2 is the Love number and Q the quality factor of
the planet of radius Rp and spin or orbital frequency !. The
key parameter k2

Q
depends on the internal properties of the

body8. The dissipated energy Ė heats the planet and damps the
eccentricity of the orbit, ultimately leading to its circularisa-
tion and a reduction of the semi-major axis. To maintain tidal
heating, the orbital eccentricity must be excited by the interac-
tion with other secondary objects, as is the case for Jupiter’s
moon Io for instance. In order to investigate if tidal heating on
planet b is sufficient enough, we ran numerical simulations of
the planetary system using the N-body code SyMBA (Duncan
et al. 1998).

To build our initial conditions, we took the e,$, orbital peri-
ods, K, and mid-transit time from Gillon et al. (2017). They
measure a non-zero eccentricity for planets c, f , and d, but
not for planet b, whose eccentricity is fixed to zero to fit the
other orbital parameters. They do not provide data for the out-
ermost two planets g and h, but the long orbital periods of
these planets make them unlikely to affect the inner four plan-
ets, and their orbital parameters suffer larger uncertainty so we
neglect them in our simulations. We find that the eccentricity
of planet b is excited by the other planets. In absence of dissi-
pation, the system is stable for at least 1 Gyr, and eb oscillates

8 For reference, it is of the order of 10�4,�5 for gas giant planets and
about 0.025 for the Earth.
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Gaia also provides stellar abundances in a homogeneous way for millions of stars. 
Stellar abundances are introduced into planetary models to derive exoplanet internal 
structure. 

Alejandra Recio-Blanco et al.: GSP-Spec RVS analysis in Gaia DR3

Fig. 17. Number of stars whose atmospheric parameters have been derived by MatisseGauguin and ANN (left and right panels, respectively). The
dark green histograms refer to the whole sample whereas the light-green ones show only the very best parametrised stars with all their parameter
quality flags equal to zero.

Fig. 18. Same as Fig. 17 but for the individual abundances derived by GAUGUIN plus the CN-abundance proxy and the DIB. The light-blue
histogram (left bars) refers to the whole sample. The two other sets of bars (central and right bars) show only the very best stars with all their
parameter flags and their abundance uncertainty quality equal to zero. The abundance upper limit flag is lower than or equal to one and equal to
zero for the medium-blue and dark-blue bars, respectively.

Schultheis et al. 2022). The homogeneous GSP-Spec treatment
of the exhaustive all-sky RVS survey enables a chemo-physical
parametrisation quality comparable to that of ground-based sur-
veys of higher spectral resolution and wavelength coverage. Ex-
amples of this are the precision in the estimated individual chem-
ical abundances (including heavy elements) allowing chemo-
dynamical studies of Galactic stellar populations, DIB parameter
estimation from individual spectra, and the precision in the at-
mospheric parameters providing clear constraints on stellar evo-
lution models (see below).

In the following, we provide a few more examples of GSP-
Spec results, focusing on (i) the number of parametrised stars
in di↵erent quality regimes, (ii) the colour–e↵ective temperature
relation, (iii) an illustration of the Te↵ spatial distribution, (iv) the
atmospheric parameters of high-S/N spectra and associated con-
straints on stellar evolution models, and (v) the parametrisation
of very metal-poor stars.

10.1. Number of parametrised stars in different quality

regimes

As explained throughout this article, GSP-Spec has produced
two sets of parameters (one from the MatisseGauguin work-
flow on the AstrophysicalParameters table, and another from the
ANN workflow on the AstrophysicalParametersSupp table) for

about 5.6 million stars from their RVS spectra. The total num-
ber of derived atmospheric parameters by both workflows and
the number of GAUGUIN chemical abundances are illustrated in
Fig. 17 (left panel for MatisseGauguin and right panel for ANN)
and Fig. 18, respectively. In both figures, the total number of
published parameters is shown together with the corresponding
number for the best parametrised stars (from a high-quality se-
lection, where all parameter flags are set to zero, including the
abundance flags from MatisseGauguin). It is important to note
that imposing that the full flag chain be equal to zero corresponds
to very demanding requirements, including very low associated
uncertainties. This selects about two million stars for the atmo-
spheric parameters, whereas, for the chemical abundances (cf.
Fig. 18), the number of estimates varies over several orders of
magnitude from one element to another, as expected. In partic-
ular, calcium and iron (Fe i) are the most often derived species
with estimates for around two millions stars, thanks to the Ca
prominent lines and the numerous available iron lines. Abun-
dances of heavy elements are derived for up to 104-105 stars,
although these numbers strongly decrease when all the flags are
used to filter (Ce being the heavy element with the highest num-
ber of estimates). However, we point out that this very strict qual-
ity filtering can be relaxed to increase number statistics, depend-
ing on the scientific goals of the user.
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Stellar density and mass

Ligi+ 2019

PLANET B PLANET C
Radius [R⊕] 1.50 ± 0.06 1.41 ± 0.05

Mass [M⊕] 4.27 ± 0.34 3.96 ± 0.34

Density [ρ⊕] 1.27 ± 0.16 1.41 ± 0.17 

Corr. (Mp - 

Rp)
0.22 0.23

Smaller planets than previous estimates 

→ These new radii put the planets on 
the left side of the evaporation valley, 
while they were thought to be in the 
gap. 

HD219134

28
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Fig. 7.— Top: Completeness-corrected histogram of planet radii for planets with orbital periods shorter than 100 days. Uncertainties
in the bin amplitudes are calculated using the suite of simulated surveys described in Section C. The light gray region of the histogram for
radii smaller than 1.14 R� suffers from low completeness. The histogram plotted in the dotted grey line is the same distribution of planet
radii uncorrected for completeness. The median radius uncertainty is plotted in the upper right portion of the plot. Bottom: Same as top
panel with the best-fit spline model over-plotted in the solid dark red line. The region of the histogram plotted in light grey is not included
in the fit due to low completeness. Lightly shaded regions encompass our definitions of “super-Earths” (light red) and “sub-Neptunes”
(light cyan). The dashed cyan line is a plausible model for the underlying occurrence distribution after removing the smearing caused by
uncertainties on the planet radii measurements. The cyan circles on the dashed cyan line mark the node positions and values from the
spline fit described in §4.3.

Fulton+ 2017



Stellar density and mass

Ligi+ 2019

PLANET B PLANET C
Radius [R⊕] 1.50 ± 0.06 1.41 ± 0.05

Mass [M⊕] 4.27 ± 0.34 3.96 ± 0.34

Density [ρ⊕] 1.27 ± 0.16 1.41 ± 0.17 

Corr. (Mp - 

Rp)
0.22 0.23

Smaller planets than previous estimates 

→ These new radii put the planets on 
the left side of the evaporation valley, 
while they were thought to be in the 
gap. 

ρb/ρc = 0.905 ± 0.131 (0.95 for Venus/Earth)  
→ 50 % chance that their densities differ more 
than 2× more than those of Venus and Earth... 
 
The more massive one (b) is the less dense. 
→ Different core/mantle ratio ? Thick gas 
envelope ? Enrichment in refractory elements ?
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Stellar density and mass

Ligi+ 2019
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Radius [R⊕] 1.50 ± 0.06 1.41 ± 0.05
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→ These new radii put the planets on 
the left side of the evaporation valley, 
while they were thought to be in the 
gap. 

ρb/ρc = 0.905 ± 0.131 (0.95 for Venus/Earth)  
→ 50 % chance that their densities differ more 
than 2× more than those of Venus and Earth... 
 
The more massive one (b) is the less dense. 
→ Different core/mantle ratio ? Thick gas 
envelope ? Enrichment in refractory elements ?

Bower+ 2019: a molten mantle is 25% less dense than a solid one. Could HD219134 b be 
partially molten? 

HD219134
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Stellar density and mass
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Tidal heating from the host star dissipates energy and circularizes the orbit. 
 
→ Sustainable energy source if and only if the eccentricity is pumped by other planets (ex: Io).  

N-body simulations of the system:  
eb oscillates between 0.005 and 0.037.  

→ tidal heating up to 100 times more than Io!  
HD219134 c: less tidal heating than Io (because  
further from the star). 
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Result 
→ N-body simulations: planet b’s eccentricity 
is excited despite not measurable.  

→ Assuming a dissipation inside this planet 
equivalent to that of Earth, this strongly 
suggests that this planet could be at least 
partially molten, explaining its lower density 
than its neighbor HD219134 c, even if they 
have identical composition. 

Tidal heating from the host star dissipates energy and circularizes the orbit. 
 
→ Sustainable energy source if and only if the eccentricity is pumped by other planets (ex: Io).  

N-body simulations of the system:  
eb oscillates between 0.005 and 0.037.  

→ tidal heating up to 100 times more than Io!  
HD219134 c: less tidal heating than Io (because  
further from the star). 
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Error budget for ρp of HD219134 and 55 Cnc
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16 Ellis et al.

Table 3. Summarized Properties of the HD 97658 System

Property Value Source

Measured Stellar Properties
Parallax [mas] 46.412±0.022 Gaia Collaboration et al. (2018); van Leeuwen (2007b)
Distance [pc] 21.55± 0.011 Gaia Collaboration et al. (2018)
[Fe/H] [dex] -0.23±0.03 Howard et al. (2011)
✓UD-R [mas] 0.296± 0.004 §3.1 Interferometry
✓LD [mas] 0.314± 0.004 §3.1 Interferometry
R? [R�] 0.728± 0.008 §3.1 Interferometry/Parallax
T e↵[K] 5211± 32 §3.2 Interferometry/SED
FBol [erg s�1 cm�2] 2.42± 0.01⇥ 10�8 §3.2 SED Templates
L? [L�] 0.351± 0.001 §3.2 FBol/Distance
Linear Limb Darkening µR 0.629+0.0137

�0.0143 §3.1 Parviainen & Aigrain (2015); Husser et al. (2013)

Planetary Properties
Transit Depth [ppm] 712±38 §4 Exofast

Period [days] 9.48971157± 0.00000077 §4 Exofast

T0 [BJD] 2458904.9366± 0.0008 §4 Exofast

Rp/R? 0.02668±0.0007 §4 Exofast

Inclination [deg] 89.05+0.41
�0.24 §4 Exofast

Impact Parameter 0.39+0.11
�.018 §4 Exofast

Eccentricity 0.054+0.039
�0.034 §4 Exofast

Mass [M�] 7.52±0.86 §4 Exofast

a/R? 24.16± 0.69 §4 Exofast

Rp [R�] 2.12±0.061 §4
⇢p [g cm�3] 3.681± 0.51 §4
TEq[K] 749± 12 §4

Stellar and Planetary Properties from Transit Observables
⇢? [g cm�3] 3.11± 0.27 §4
M? [M�] 0.85± 0.08 §4
log(g) [cgs] 4.64±0.04 §4
Corr(R?,M?) 0.41 §4
⇢p [g cm�3] 4.835± 0.70 §4
Rp [R�] 2.11±0.059 §4
Mass [M�] 8.25±1.01 §4
Corr(Rp, Mp) 0.09 §4

report substantially di↵erent composition and properties of HD 97658 b , but we can393

provide greater certainty in the previous results.394

Follow-up observations of HD 97658 with JWST will allow a more precise and accu-395

rate measurement of the transit depth. This is a particularly interesting measurement396

to pin down as current best measurements of the transit depth are accurate to only397

⇠ %5, which complicates more accurate analysis of the planet. These follow up ob-398

servations would provide further exciting insight into this nearby super-Earth planet.399

HD97658 (Ellis+ 2020)

• Discrepancies between models, methods, measures 
• Need measures to calibrate models 
• → Interferometry + planetary transits can bring very important information on usually 

non-measurable properties 

Stellar models
Integration of the stellar radius from interferometry
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HD97658 (Ellis+ 2020)

• Discrepancies between models, methods, measures 
• Need measures to calibrate models 
• → Interferometry + planetary transits can bring very important information on usually 

non-measurable properties 

Stellar models
Integration of the stellar radius from interferometry
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Y. Lebreton and M.J. Goupil: “À la carte” stellar age-dating and weighing with asteroseismology

radius at the basis of the convective envelope is Rzc ∼ 0.80 R!.
These quantities can be quite different in other models, which
are nevertheless seismically equivalent. In particular, the Y0-M
degeneracy has a major impact on the core mass. For instance,
changing Y0 from 0.26 to 0.32 changesM! from 1.28 to 1.18M",
Mcc from 0.006 to 0.023 M!, and Rcc from 0.035 to ∼ 0.053 R!.
The depth of the convective envelope is unaffected.

Models optimized with rather high, currently accepted or
predicted values of core overshooting (sets I and J) show quite
high values of χ2R,seism, indicating that overshooting is proba-
bly ruled out for this star. We investigated this point in depth
by performing an optimization where we also adjusted the over-
shooting parameter (models A6-ov and A7-ov, in the appendix).
We found that quite low overshooting is indeed preferred, with
αov in the range 0.0 − 0.04. In principle, seismology has the
potential to distinguish between different values of overshoot-
ing even for small cores through the signature left in the os-
cillation spectrum by the convective core (see the recent works
by Silva Aguirre et al. 2013; Brandão et al. 2013, and references
therein). Such diagnostics are beyond the scope of this paper.
However, we made some additional tests that indicate that in
the case of HD 52265, the seismic data are probably not precise
enough to allow us to infer the size of the mixed core precisely
or accurately.

4.6. Seismic properties

In Fig. 7, we show how the stellar models succeed -or not- in
matching observed oscillation frequencies and frequency sep-
arations. Since a thorough examination of seismic properties
of all the models is beyond the scope of this paper, we se-
lected some models. The top left panel shows the échelle di-
agram corresponding to the model of case A7, optimized on
the basis of the individual frequencies. When surface effects
are corrected for, the model succeeds rather well in reproduc-
ing the échelle diagram for a value of the adjustable parame-
ter bSE = 4.2 (Eq. 12) compatible with the solar value obtained
by Deheuvels & Michel (2011) with quasi-similar input physics
(bSE," = 4.25). On the other hand, in the high-frequency range,
un-corrected models do not match observations. In this respect,
models A6 (frequencies not corrected, not plotted) and A7 (with
uncorrected frequencies) give similar results. Furthermore, the
top right panel shows that model A7 reproduces the observed in-
dividual large frequency separations ∆ν%(n) quite well. The bot-
tom left panel shows the comparison of the observed and model
frequency separation ratios rr01/10(n). Model A7 reproduces the
mean slope of the variation of the ratios rather well, but not the
oscillatory behaviour. As shown by Lebreton & Goupil (2012),
this behaviour in HD 52265 is reproduced in models that include
convective penetration below the convective envelope, like the
model of set K, which is similar to set A but with ξPC = 1.3. The
figure also shows the effect of the Y0-M degeneracy on the dia-
gram. The larger the helium abundance, the higher the rr01/10(n)
ratios. However, with the present accuracy on the data, it is hard
to distinguish the models with different (Y0, M) values. Finally,
we plotted a model of set I that takes into account a moderate
amount of core overshooting (αov = 0.15). As already pointed
out in Section 4.5, the overshooting amount cannot be very large
since even a moderate amount of overshooting is ruled out by the
present data. The bottom right panel shows the fit of the r02(n)
ratios. In this case, regarding the precision on the data, it is diffi-
cult to distinguish the models.

Fig. 8. Age estimates for HD 52265. Columns CaII, LX, Li and
gyrochronology give empirical estimates based on the R′HK in-
dex (circle), the lower limit from X-luminosity (upwards tri-
angle), the upper limit from lithium surface abundance (down-
wards triangle) and, the gyrochronology (diamonds). The col-
umn HRD inversion shows estimates based on inversion of
isochrones with circles for Padova isochrones and diamonds
for BaSTI isochrones, full symbols for Bayesian methods, and
empty symbol for χ2-minimisation, see text. The column seis-
mic shows the seismic determination for à la carte models of
case 6 (Table 3 and Fig. 4)

5. Ages from other methods

We estimate below the age of HD 52265, on the basis of other
age-dating methods (empirical or H-R diagram inversion). We
compare the resulting ages with the age inferred from à la carte
stellar modelling.

5.1. Empirical ages

5.1.1. Activity

The chromospheric activity and age of solar-type dwarfs ap-
pear to be anti-correlated. Empirical relations allow us to rely
the CaII H & K emission index R′HK = LHK/Lbol to age (see
e.g. Mamajek & Hillenbrand 2008, for a recent calibration). For
HD 52265, values of logR′HK listed in the literature are in the
range [−5.02,−4.59]. These low values indicate very low chro-
mospheric activity. Using the Mamajek & Hillenbrand R′HK-age
relation, we derived an age of 4.0 ± 3.0 Gyr. The ages can also
be roughly estimated from the Mamajek & Hillenbrand relation
between the fractional X-ray emission R′X = LX/Lbol and age.
For HD 52265, Kashyap et al. (2008) derived an upper limit,
LX < 28.28, which provides a lower age limit of 2.5 Gyr. Clearly,
such empirical calibrations are too coarse to provide a reliable
age of evolved stars with low chromospheric activity. Indeed, as
recommended recently by Pace (2013), the use of chromospheric
activity as a stellar clock should be limited to stars younger than
about 1.5 Gyr.

13
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T. Guillot and M. Havel: CoRoT-2

Fig. 5. Constraints obtained for the age and radius of CoRoT-2 with different assumptions. The left panels correspond to results obtained by
neglecting the effect of spots. The right panels assume an additional uncertainty in the derived Teff due to a 0% to 20% fraction of spots. From top
to bottom, the panels are: a) Results obtained with the full CESAM calibrated evolution grid; b) results obtained with CESAM with a mixing length
parameter α = 0.85α!; c) same as previously but with α = 1.15α!; d) results obtained with the calibrated CESAM evolution grid but a constraint
on the stellar density obtained from Alonso et al. (2008) instead of Gillon et al. (2010); e) results obtained with the YY tracks (Demarque et al.
2004); f) results obtained with the BCAH98 tracks (Baraffe et al. 1998). The colored area corresponds to constraints derived from stellar evolution
models matching the stellar density and effective temperature within a certain number of standard deviations: less than 1σ (red), 2σ (blue), or 3σ
(yellow).

Page 5 of 15

→ Inconsistency in stellar parameters perturbs the exoplanet composition  
→ Composition of planets that we do not find in our solar system?

A&A 527, A20 (2011)

at the center of the planet, so that L(r = 0) = H2. (For a dis-
cussion of how the depth of the dissipation affects the planet’s
structure and evolution, see Guillot & Showman (2002).) The
orbital evolution also modifies the atmospheric boundary condi-
tion by altering the irradiation flux. The equilibrium temperature
Teq is hence recalculated at each timestep. Our approach to the
tidal dissipation calculation is thus similar to that chosen in other
calculations (Ibgui & Burrows 2009; Miller et al. 2009), but it is
based on the equations derived by Barker & Ogilvie (2009) in-
stead of those of Jackson et al. (2008). The main differences are
that the relations are valid for higher values of the eccentricity
(see also Leconte et al. 2010) and include the secular evolution
of stellar and planetary spins.

3.2. Standard evolution models

We compare in Fig. 9 observational constraints on age and plan-
etary size to standard evolution models with slightly different as-
sumptions about mass, initial planetary radius, and helium con-
tent. The standard models are defined by the planet only con-
tracting from an initial radius Rini as a result of the loss of its
internal entropy: the only reservoir of energy is the initial grav-
itational energy

∫
Gm/r dm. The atmospheric boundary condi-

tion corresponds to our baseline case.
Our fiducial model has a mass of M = 3.5 MJ , an initial

radius Rini = 2 RJ, and an equivalent helium mass mixing ra-
tio Y = 0.30. It falls short of reproducing the inferred radius by
∼20% or more, except at young ages: for pre-main-sequence so-
lutions at 30–40 Ma, the discrepancy is reduced to about 10%.
Within the error bars, models with different masses have almost
identical evolutions and therefore planetary mass is not a signif-
icant parameter in the problem (this is because CoRoT-2b lies
in the particular regime of mass for which the radius is almost
independent of mass, which for isolated objects corresponds to
a maximum in the mass-radius relation -see Guillot (2005)). In
a similar way, changing the initial radius affects the evolution
only in the first million years: the initial conditions are rapidly
forgotten. One may wonder whether a different composition, in
particular a different helium abundance, would have a stronger
effect on evolution? As shown in Fig. 9, models with Y = 0.25
indeed yield a ∼4% larger size than for Y = 0.30, but this again
falls short in explaining the large size of the planet.

These calculations confirm that CoRoT-2b is an anomalously
large planet, a result already obtained by Alonso et al. (2008),
Leconte et al. (2009), and Miller et al. (2009). However it also
demonstrates the fact that the planet’s young age is likely to be a
crucial factor in explaining its size, both because of the possibil-
ity that the planet is initially quite large, and because our stellar
evolution models yield solutions at 30–40 Ma that are closer to
the theoretical evolution tracks than at any later times.

3.3. CoRoT-2b among its peers

It is instructive to compare CoRoT-2b to an ensemble of other
transiting giant planets. Among these, CoRoT-2b may not be the
largest (it is smaller than CoRoT-1b, HAT-P-8b, TrES-4b, and
the present record-holder WASP-12b), but it remains the most
difficult to reconcile with present-day models. This is most easily
shown by ranking the planets in terms of their radius anomaly,
i.e. the difference between its measured radius and the one pre-
dicted by models of a pure solar-composition planet of the same
mass and age (Guillot et al. 2006). As shown by Fig. 10, when
using standard models, CoRoT-2b has a positive, large radius
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Fig. 9. Contraction of CoRoT-2b compared to its measured radius and
inferred age. Our fiducial model has an initial radius Rini = 2 RJ , mass
Mp = 3.5 MJ , and equivalent helium mass-mixing ratio Y = 0.30. The
evolution for models with different initial radii Rini (3 to 6 RJ), different
masses (3.3 to 3.7 MJ), or a different value of Y (0.25) are shown as
labeled.
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Fig. 10. Radius anomaly (difference between observed and modeled ra-
dius – see text –) as a function of planetary mass (in log) for a selection
of known transiting giant planets. Left panel: standard models (includ-
ing stellar irradiation but no extra heat source) are used for the compar-
ison. Right panel: models assume an extra heat source at the planet’s
center equivalent to 1% of the incoming stellar heat flux (see Guillot &
Showman 2002). CoRoT-2b is labeled “27”. It is the most anomalously
large planet on the right panel.

anomaly of 20 000 km, but still smaller than that of HAT-P-8b,
TrES-4b, and WASP-12b. However, for these last three planets,
their large radius can be explained within the error bars by an
additional heat source equivalent to 1% of the incoming stellar
luminosity deposited at the planet’s center (see Guillot 2005 and
references therein). As shown in the right panel of Fig. 10, this
is not true for CoRoT-2b: because of its large mass, the planet
tends to contract rapidly and therefore requires special condi-
tions to explain its large size.

3.4. CoRoT-2b’s atmosphere

We now consider how models of the planet’s atmosphere af-
fect its evolution. Remarkably, secondary transits of CoRoT-2b
were detected in the optical from CoRoT lightcurves (Alonso
et al. 2009; Snellen et al. 2010) and in the infrared from Spitzer
IRAC observations (Gillon et al. 2010) as well as ground-based
measurements (Alonso et al. 2010a). These directly probe the
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Fig. 5. Constraints obtained for the age and radius of CoRoT-2 with different assumptions. The left panels correspond to results obtained by
neglecting the effect of spots. The right panels assume an additional uncertainty in the derived Teff due to a 0% to 20% fraction of spots. From top
to bottom, the panels are: a) Results obtained with the full CESAM calibrated evolution grid; b) results obtained with CESAM with a mixing length
parameter α = 0.85α!; c) same as previously but with α = 1.15α!; d) results obtained with the calibrated CESAM evolution grid but a constraint
on the stellar density obtained from Alonso et al. (2008) instead of Gillon et al. (2010); e) results obtained with the YY tracks (Demarque et al.
2004); f) results obtained with the BCAH98 tracks (Baraffe et al. 1998). The colored area corresponds to constraints derived from stellar evolution
models matching the stellar density and effective temperature within a certain number of standard deviations: less than 1σ (red), 2σ (blue), or 3σ
(yellow).
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• We can’t measure the angular diameter of all stars 
• SBCR are here for that!

Before

Discrepancy up to 18%

Surface-brightness color relationship

Salsi+ 2020, 2021

After

Precision between 1 and 2% with 
photometric precision better than 0.04 mag

A. Salsi et al.: Precise calibration of the dependence of surface brightness–colour relations on colour and class for late-type stars

Table 2. Infrared photometry sources with their corresponding labels
included in Table 1.

Infrared photometry source Label

TMSS (Neugebauer & Leighton 1969) T
Ducati (2002) Du
2MASS (Cutri et al. 2003) 2M
DENIS Consortium (2005) De
van Belle & von Braun (2009) V
Tabur et al. (2009) Ta
Laney et al. (2012) La
Mann et al. (2019) M19

photometry. This corresponds to 85 stars over the 153 in our
samples. We did a test by considering only Ks photometries to
constrain our SBCRs. We find a consistency of less than 1-�
between the one with only 2MASS photometry and the other one
with heterogeneous photometry. To evaluate the impact of the
heterogeneous infrared photometry, we compared both photome-
tries for 4 stars in our samples: HD 140283, HD 3651, HD 4628,
and HD 75732. We found a di↵erence of 0.05%, 0.35%, 2.5%,
and 1.2%, respectively, leading to a di↵erence of 0.1%, 0.7%,
4.5%, and 2.8% on the angular diameter. Both K and Ks pho-
tometries are consistent in the error bars for these four stars.
The di↵erence is therefore minimal, provided that K and Ks pho-
tometries di↵er within 2%. To conclude, our SBCRs are mixed
with 2MASS/Johnson �K photometries, but both are consistent,
meaning that our SBCRs can be used with the two photometries
without including any significant bias on the angular diameter.

3.7. Reddening corrections

We used the Stilism
2 online tool (Lallement et al. 2014;

Capitanio et al. 2017) to compute the colour excess E(B � V).
This tool produces tridimensional maps of the local interstellar
matter (ISM) based on measurements of starlight absorption by
dust (reddening e↵ects) or gaseous species. By definition, the
interstellar attenuation AV in the visible band is given by

AV = RV ⇥ E(B � V), (5)

where RV is the ratio of total to selective absorption in the visible
band, for which we adopted RV = 3.1, which corresponds to the
typical value in the di↵use ISM (Cardelli et al. 1989). We then
used AK = 0.119 ⇥ AV , according to Nishiyama et al. (2009).

It is well known that the SBCR is not significantly sensitive
to the reddening correction, since the magnitude absorption is
compensated by the colour extinction. The visual absorption of
our samples rarely exceeds 0.1 mag. To quantify its contribution,
we increased the value of the visual extinction on a few stars of
our F5/K7 giants sample. A high value AV = 0.1 mag yields
to a di↵erence of 0.3% on the surface brightness, and 0.35%
on the resulting angular diameter. Nardetto et al. (2020) did a
test by varying the visible absorption AV on their entire sample.
They find that for a larger absorption of 0.1 mag, the zero-point
of their SBCR increases by 0.045 mag (i.e. 0.0045 mag in the
FV definition), which roughly corresponds to the rms of their
relation.

The contribution of the visual extinction to the SBCR is
therefore minimal. However, we decided to take into consider-

2 The online tool is available at http://stilism.obspm.fr

ation the extinction since the colour validity interval of the rela-
tion can be impacted.

4. Determination of new surface brightness–colour
relations

4.1. Final selected measurements samples
With the methodology described in Sect. 3, we obtain four sam-
ples of carefully selected measurements, depending on luminos-
ity classes. All the tables (including selected and rejected stars)
are provided at the CDS. The four tables have the following num-
bers of selected stars (selected/total3): F5/K7–II/III (70/274),
F5/K7–IV/V (38/156), M–II/III (29/67), M–V (16/37). As an
example, the F5/K7 giants sample is shown in Table 3, including
keywords relative to the source of the infrared photometry, as
well as specific keywords corresponding to criteria of selection
indicated in the “Notes” column. Final selected measurements
are those with an empty cell in the Notes column.

4.2. New specific surface brightness–colour relations
The new relations for the four samples are presented in Fig. 3.
The SBCRs are listed in Table 4, and we detail our fitting strat-
egy in Appendix A. We did a test by comparing a least-square
(LS) regression with our strategy. We find that using a simple
LS method leads to a maximum di↵erence of 1% on the angular
diameter compared to our method. We therefore decided to keep
our fitting strategy, since the di↵erence with the LS method is
not significant. We consider our method as more robust as we
take into consideration all uncertainties that could induce a bias
in the final SBCR.

The most precise relation is found for the F5/K7 giants work-
ing box, with an rms of 0.00223 mag. The resulting angular
diameter is obtained from Eq. (3) as follows:

✓LD = 108.4392�0.2V0�2FV0 . (6)

A formal way to calculate the expected angular diameter
precision �✓LD is to apply the partial derivative method on
Eq. (6):
�✓LDrms

✓LD
= 2 ln(10)�rms. (7)

This leads to a precision of 1% on the estimation of the
angular diameter in the case of F5/K7 giants. Regarding the
other boxes, the rms of the relations range from 0.00377 mag
to 0.00461 mag, leading to an estimate of the angular diame-
ter precision between 1.7% and 2.1%. As shown in Table 4, the
V�K colour domain of validity of these relations ranges from 1
to 7.5 mag.

However, one should notice that such precision corresponds
to a lower limit on the expected angular diameter uncertainty.
Indeed, if we want to deduce the angular diameter using a SBCR,
we have to consider the uncertainties on the colour and the
coe�cients of the SBCR. The total resulting uncertainty on the
angular diameter can be expressed as ✓LD ± �✓LDrms

± �✓LD
a,b,phot

,
where �✓LD

a,b,phot
is given by

�✓LD
a,b,phot

= 2 ln(10)✓LD�✓LDa,b
�✓LDphot

, (8)

where

�✓LDa,b
=
n
[(V�K) � 0.881AV ]2 �2

a
+ �2

b

o1/2
(9)

3 The total number of measurements is the number of measurements
remaining after applying common criteria to the JMDC.
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Conclusion

•The most important parameter  
derived from interferometry plus distances 
(Gaia) is the stellar radius: 

• Mandatory for determining exoplanet 
radius 

• Incorporated in stellar models that is used 
for exoplanets characterization 

• Incorporated in exoplanet interior models  

•Stellar parameters are very 
important for exoplanetary 
characterization 

•Interferometry can help in many 
direct and indirect ways
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Conclusion

•Gaia brings unprecedented 
precisions on distances, which  
brings very precise radii 

•New interferometric developments 
like SPICA/CHARA will allow the study 
of a bench of exoplanet host stars. 

•Gaia is not only useful for 
interferometry, but also for detection 
through astrometry and transits.  

•Gaia also provides stellar abundances 
that are used to determine exoplanet 
interiors.
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THANK YOU!

Credits: ESA
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