Galactic Kinematics & Statistical Stellar Ages

Melissa Ness
Columbia University & Center for Computational Astrophysics, New York

Sagan workshop, July 2022
Outline

1. The Milky Way Data Revolution
2. The Populations in the Milky Way Galaxy in the Gaia era
3. Statistical Stellar Ages
Outline

• The Milky Way Data Revolution

• The Populations in the Milky Way Galaxy in the Gaia era

• Statistical Stellar Ages
Circa 2004 — The Geneva Copenhagen survey

~17,000 G, F dwarfs in solar neighbourhood
  • ages, proper motions, metallicities, velocities — Nordstrom+ 2004
  • solar neighbourhood metallicity distributions, age-metallicity & age-velocity relations
Circa 2004 — The Geneva Copenhagen survey

~17,000 G, F dwarfs in solar neighbourhood

- ages, proper motions, metallicities, velocities — Nordstrom+ 2004
- solar neighbourhood metallicity distributions, age-metallicity & age-velocity relations

Holmberg+ 2009
Circa 2004 — The Geneva Copenhagen survey

~17,000 G, F dwarfs in solar neighbourhood

- ages, proper motions, metallicities, velocities — Nordstrom+ 2004
- solar neighbourhood metallicity distributions, age-metallicity & age-velocity relations

“upside-down” formation (Bird+ 2021, Wisnioski+ 2015) + disk heating (radial migration, molecular clouds, mergers)
Circa 2004 — The Geneva Copenhagen survey

~17,000 G, F dwarfs in solar neighbourhood
- ages, proper motions, metallicities, velocities — Nordstrom+ 2004
- solar neighbourhood metallicity distributions, age-metallicity & age-velocity relations

“Unlikely to be superseded until the Gaia mission (Perryman et al. 2001) and/or the RAVE project (Steinmetz 2003)”
2022: Realising the Milky Way as a test of Galaxy Formation
2022: Realising the Milky Way as a test of Galaxy Formation

- The Milky Way is a typical spiral galaxy
2022: Realising the Milky Way as a test of Galaxy Formation

• The Milky Way is a typical spiral galaxy
• Stellar mass — 75% in the disk, 24% is in the bulge
2022: Realising the Milky Way as a test of Galaxy Formation

- The Milky Way is a typical spiral galaxy
- Stellar mass — 75% in the **disk**, 24% is in the **bulge**
2022: Realising the Milky Way as a test of Galaxy Formation

- The Milky Way is a typical spiral galaxy
- Stellar mass — 75% in the disk, 24% is in the bulge
- We can resolve individual stars & derive a set of measurements from these stars
  - \( p(\text{age, mass, chemical composition, orbits}) \)

All sky-density map of the 1.1 billion sources in Gaia (ESA/Gaia/DPAC/U.Lisbon)
2022: Realising the Milky Way as a test of Galaxy Formation

• The Milky Way is a typical spiral galaxy
• Stellar mass — 75% in the disk, 24% is in the bulge
• We can resolve individual stars & derive a set of measurements from these stars
  • p(age, mass, chemical composition, orbits)

All sky-density map of the 1.1 billion sources in Gaia (ESA/Gaia/DPAC/U.Lisbon)
2022: Realising the Milky Way as a test of Galaxy Formation

- The Milky Way is a typical spiral galaxy
- Stellar mass — 75% in the **disk**, 24% is in the **bulge**
- We can resolve individual **stars** & derive a set of measurements from these stars
  - \( p(\text{age, mass, chemical composition}, \text{orbits}) \)
    - stellar spectra

All sky-density map of the 1.1 billion sources in Gaia (ESA/Gaia/DPAC/U.Lisbon)
2022: Realising the Milky Way as a test of Galaxy Formation

• The Milky Way is a typical spiral galaxy
• Stellar mass — 75% in the disk, 24% is in the bulge
• We can resolve individual stars & derive a set of measurements from these stars
  • $p(\text{age, mass, chemical composition, orbits})$
  • Stellar spectra

All sky-density map of the 1.1 billion sources in Gaia (ESA/Gaia/DPAC/U.Lisbon)
2022: Realising the Milky Way as a test of Galaxy Formation

- The Milky Way is a typical spiral galaxy
- Stellar mass — 75% in the disk, 24% is in the bulge
- We can resolve individual stars & derive a set of measurements from these stars
  - \( p(\text{age, mass, chemical composition, orbits}) \)
  - stellar spectra
  - satellite missions measuring movement

All sky-density map of the 1.1 billion sources in Gaia (ESA/Gaia/DPAC/U.Lisbon)
The Milky Way in a cosmological context & stars as stellar-planetary architectures
The Milky Way in a cosmological context & stars as stellar-planetary architectures
The Milky Way in a cosmological context & stars as stellar-planetary architectures
The Milky Way in a cosmological context & stars as stellar-planetary architectures
The Milky Way in a cosmological context & stars as stellar-planetary architectures
The Milky Way in a cosmological context & stars as stellar-planetary architectures

- An inventory of information across a huge range of spatial and temporal scales
The Milky Way in a cosmological context & stars as stellar-planetary architectures

- An inventory of information across a huge range of spatial and temporal scales
- Mapping (ages, velocities, metallicities)
- Planets

Gaia (astrometry) + Ground based spectroscopic surveys +

JWST, MUSE, ELTs, LIGO, LISA, TESS, Kepler, Vera Rubin, Nancy Grace Roman Space Telescope

Sagan, 2022

Melissa Ness
Where is the Milky Way spectra coming from?

- Millions of spectra from a multitude of surveys — different $\lambda$, Resolution, spatial coverage:
  - Completed/current: APOGEE, GALAH, Gaia-ESO, RAVE, Gaia, LAMOST, SEGUE
  - Future/Current: Gaia, SLOAN V, MOONS, 4-MOST, WEAVE
Where is the Milky Way spectra coming from?

- Millions of spectra from a multitude of surveys — different $\lambda$, Resolution, spatial coverage:
  - Completed/current: APOGEE, GALAH, Gaia-ESO, RAVE, Gaia, LAMOST, SEGUE
  - Future/Current: Gaia, SLOAN V, MOONS, 4-MOST, WEAVE
Where is the Milky Way spectra coming from?

- Millions of spectra from a multitude of surveys — different λ, Resolution, spatial coverage:
  - Completed/current: APOGEE, GALAH, Gaia-ESO, RAVE, Gaia, LAMOST, SEGUE
  - Future/Current: Gaia, SLOAN V, MOONS, 4-MOST, WEAVE
Where is the Milky Way spectra coming from?

- Millions of spectra from a multitude of surveys — different $\lambda$, Resolution, spatial coverage:
  - Completed/current: APOGEE, GALAH, Gaia-ESO, RAVE, Gaia, LAMOST, SEGUE
  - Future/Current: Gaia, SLOAN V, MOONS, 4-MOST, WEAVE

- Deliverables from spectra:
  - $V_{\text{rad}}$
  - $\text{Teff, logg, [Fe/H]}$ (stellar parameters) & $[X/Fe]$ (chemical compositions)
SDSS V Milky Way Mapper - 5 million stars across the Milky Way
SDSS V Milky Way Mapper - 5 million stars across the Milky Way

- **SDSS V Milky Way Mapper 2022-2027**
- A holistic view of the Galaxy — P.I. Juna Kollmeier (see Kollmeier et al., 2017)
- Milky Way Mapper is 5 million stars in the IR (R=22,500) and many programs
- Galactic Genesis makes up the majority continuous, contiguous map of the disk (below)
SDSS V Milky Way Mapper - 5 million stars across the Milky Way

- **SDSS V Milky Way Mapper 2022-2027**
- A holistic view of the Galaxy — P.I. Juna Kollmeier (see Kollmeier et al., 2017)
- Milky Way Mapper is 5 million stars in the IR (R=22,500) and many programs
- Galactic Genesis makes up the majority continuous, contiguous map of the disk (below)
**SDSS V Milky Way Mapper - 5 million stars across the Milky Way**

- SDSS V **Milky Way Mapper 2022-2027**
- A holistic view of the Galaxy — P.I. Juna Kollmeier (see Kollmeier et al., 2017)
- Milky Way Mapper is 5 million stars in the IR (R=22,500) and many programs
- Galactic Genesis makes up the majority continuous, contiguous map of the disk (below)
SDSS V Milky Way Mapper - 5 million stars across the Milky Way

- SDSS V **Milky Way Mapper 2022-2027**
- A holistic view of the Galaxy — P.I. Juna Kollmeier (see Kollmeier et al., 2017)
- Milky Way Mapper is 5 million stars in the IR (R=22,500) and many programs
- Galactic Genesis makes up the majority continuous, contiguous map of the disk (below)

- Age,
- Fe (Sn1a)
- $\alpha$-abundance (SnII)
- distances,
- velocities,
- orbits
- [Kollmeier+ 2017]
SDSS V Milky Way Mapper - 5 million stars across the Milky Way

- **SDSS V Milky Way Mapper 2022-2027**
- A holistic view of the Galaxy — P.I. Juna Kollmeier (see Kollmeier et al., 2017)
- Milky Way Mapper is 5 million stars in the IR (R=22,500) and many programs
- Galactic Genesis makes up the majority continuous, contiguous map of the disk (below)

- Age,
- Fe (Sn1a)
- $\alpha$-abundance (SnII)
- distances,
- velocities,
- orbits
- [Kollmeier+ 2017]

**Stellar Astrophysics (SA) & Stellar System Architecture (SSA)**
- target known multi-star and planetary systems
- target stars with asteroseismic detections
- volume limited sample of stars < 100 pc
- young stars in clusters
Outline

• The Milky Way Data Revolution

• The Populations in the Milky Way Galaxy

• Statistical Stellar Ages
Milky Way Architecture

- Galactic halo
- Galactic disk
- Gas and dust
- Open cluster
- Galactic bulge
- Galactic center
- Globular clusters
- O, B stars
- Sun
- Emission nebula

30 kpc
8 kpc
4 kpc

Copyright ©2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley
Milky Way Architecture

Different populations show different abundances and have different orbital properties
Milky Way Architecture

Different populations show different abundances and have different orbital properties

Stellar halo
1% of stellar mass but time capsule of early formation

Disk
75% of stellar mass and record of assembly process

Bulge
24% of stellar mass and signature of formation events
The stellar halo

- Eggen, Linden-Bell and Sandage (1962)
The stellar halo

More eccentric

Eggen, Linden-Bell and Sandage (1962)
The stellar halo

More eccentric
Eggen, Linden-Bell and Sandage (1962)

More metal poor
The stellar halo

Gaia+spectroscopic surveys -> substructure & ‘in-situ’ and ‘accreted’

More metal poor

More eccentric

Eggen, Linden-Bell and Sandage (1962)
The stellar halo

Gaia+spectroscopic surveys -> substructure & ‘in-situ’ and ‘accreted’

Helmi+ 2018: **Gaia-Encedaleus or Saussage**
(see also Belokurov+ 2018, Myeong+ 2018, Deason+ 2018)

Also noted by Nissen & Schuster (2010)
Industry in identifying & understanding halo field structures

e.g. Feuillet+ 2021, di Matteo + 2019, Buder+ 2022, Lane+ 2022, Bird+ 2021, An+ 2021, Das+ 2020, Deason+ 2019, Mackereth+ 2019
Industry in identifying & understanding halo field structures

e.g. Feuillet+ 2021, di Matteo + 2019, Buder+ 2022, Lane+ 2022, Bird+ 2021, An+ 2021, Das+ 2020, Deason+ 2019, Mackereth+ 2019

The MW halo is almost entirely composed of substructure
Naidu+ 2020, (H3 spectroscopic survey + Gaia) —
Industry in identifying & understanding halo field structures

e.g. Feuillet+ 2021, di Matteo + 2019, Buder+ 2022, Lane+ 2022, Bird+ 2021, An+ 2021, Das+ 2020, Deason+ 2019, Mackereth+ 2019

The MW halo is almost entirely composed of substructure
Naidu+ 2020, (H3 spectroscopic survey + Gaia) —

Abundances to organise into progenitors, ex-situ, in-situ and related — Horta+ 2022 (APOGEE survey + Gaia)
Industry in identifying & understanding halo field structures

e.g. Feuillet+ 2021, di Matteo + 2019, Buder+ 2022, Lane+ 2022, Bird+ 2021, An+ 2021, Das+ 2020, Deason+ 2019, Mackereth+ 2019

The MW halo is almost entirely composed of substructure
Naidu+ 2020, (H3 spectroscopic survey + Gaia) —

Streams and possible dark-matter sub halo interaction:
GD1 (PANSTARRS and GAIA) — Price-Wheelan & Bonaca 2018, Bonaca+ 2018, (also see Banik & Bovy + 2019)

Abundances to organise into progenitors, ex-situ, in-situ and related — Horta+ 2022 (APOGEE survey + Gaia)
The Milky Way disk

“Thin” and “Thick” disk
Gilmore & Reid 1983

Melissa Ness
The Milky Way disk

“Thin” and “Thick” disk
Gilmore & Reid 1983
The Milky Way disk

"Thin" and "Thick" disk
Gilmore & Reid 1983

(Bensby 2004)

Saglia

300pc scale height

1350pc scale height
The Milky Way disk

“Thin” and “Thick” disk
Gilmore & Reid 1983

(Bensby 2004)

SnIa

300pc scale height

1350pc scale height
The Milky Way disk

“Thin” and “Thick” disk
Gilmore & Reid 1983

(Bensby 2004)

SnIIa

300pc scale height

1350pc scale height

log space density

[Fe/H]

[\text{n}/\text{Fe}]

Sagan, 2022

Melissa Ness
The Milky Way disk

Gilmore & Reid 1983

300pc scale height

1350pc scale height

SnIa

SnII

(Bensby 2004)
The Milky Way disk

“High” and “Low” alpha-disks (fast v slow star formation)
(see also Fuhrmann 1998, Gratton+ 2000, Tautvaisine+ 2001,

“Thin” and “Thick” disk
Gilmore & Reid 1983

(Bensby 2004)

SnIa

SnII

300pc scale height

1350pc scale height

[S/N/Fe] [Fe/H] log space density

0 2000 4000
distance (pc)
The Milky Way disk

“High” and “Low” alpha-disks (fast v slow star formation)
(see also Fuhrmann 1998, Gratton+ 2000, Tautvaisine+ 2001,

“Thin” and “Thick” disk
Gilmore & Reid 1983

(Bensby 2004)

From APOGEE DR17 (Horta+ 2022)
Empirical landscape of the Milky Way disk-bulge

SnII

SnIa

Eilers+ 2022
Empirical landscape of the Milky Way disk-bulge

Sagan, 2022

Eilers+ 2022
Empirical landscape of the Milky Way disk-bulge

R=2kpc

Eilers+ 2022

Sagan, 2022
Empirical landscape of the Milky Way disk-bulge

Eilers+ 2022
Empirical landscape of the Milky Way disk-bulge

R=2kpc  R=8kpc  R=17kpc

Eilers+ 2022

Sagan, 2022

Melissa Ness
Empirical landscape of the Milky Way disk-bulge

R=2kpc  R=8kpc  R=17kpc

Eilers+ 2022

Sagan, 2022

Melissa Ness
Empirical landscape of the Milky Way disk-bulge

Eilers+ 2022

Sagan, 2022
Empirical landscape of the Milky Way disk-bulge

Solar neighbourhood = bimodality

Eilers+ 2022
Empirical landscape of the Milky Way disk-bulge

Solar neighbourhood = bimodality

Eilers+ 2022
Empirical landscape of the Milky Way disk-bulge

Solar neighbourhood = bimodality

Eilers+ 2022
Empirical landscape of the Milky Way disk-bulge

High-\(\alpha\) sequence concentrated to the inner region, thicker spatially

Solar neighbourhood = bimodality

Eilers+ 2022
Empirical landscape of the Milky Way disk-bulge

High-\(\alpha\) sequence concentrated to the inner region, thicker spatially

Solar neighbourhood = bimodality

Eilers+ 2022
Empirical landscape of the Milky Way disk-bulge

High-\(\alpha\) sequence concentrated to the inner region, thicker spatially.

Low-\(\alpha\) sequence concentrated to the outer region, thinner spatially.

Solar neighbourhood = bimodality.
Empirical landscape of the Milky Way disk-bulge

High-\(\alpha\) sequence concentrated to the inner region, thicker spatially

Low-\(\alpha\) sequence concentrated to the outer region, thinner spatially

Solar neighbourhood = bimodality

Also see Nidever+ 2014, Bovy+ 2015, Hayden+ 2015, Queiroz+ 2020, Eilers+ 2021, Sharma+ 2022, Johnson+ 2022

Eilers+ 2022
Empirical landscape of the Milky Way disk-bulge

High-\(\alpha\) sequence concentrated to the inner region, thicker spatially

Low-\(\alpha\) sequence concentrated to the outer region, thinner spatially

Also see Nidever+ 2014, Bovy+ 2015, Hayden+ 2015, Queiroz+ 2020, Eilers+ 2021, Sharma+ 2022, Johnson+ 2022
Empirical landscape of the Milky Way disk-bulge

High-\(\alpha\) sequence concentrated to the inner region, thicker spatially

Low-\(\alpha\) sequence concentrated to the outer region, thinner spatially

Eilers+ 2022

Also see Nidever+ 2014, Bovy+ 2015, Hayden+ 2015, Queiroz+ 2020, Eilers+ 2021, Sharma+ 2022, Johnson+ 2022
Empirical landscape of the Milky Way disk-bulge

High-α sequence concentrated to the inner region, thicker spatially

Low-α sequence concentrated to the outer region, thinner spatially

Solar neighbourhood = bimodality

[Fe/H] gradient

Also see Nidever+ 2014, Bovy+ 2015, Hayden+ 2015, Queiroz+ 2020, Eilers+ 2021, Sharma+ 2022, Johnson+ 2022
Empirical landscape of the Milky Way disk-bulge

High-\(\alpha\) sequence concentrated to the inner region, thicker spatially

Solar neighbourhood = bimodality

Low-\(\alpha\) sequence concentrated to the outer region, thinner spatially

Also see Nidever+ 2014, Bovy+ 2015, Hayden+ 2015, Queiroz+ 2020, Eilers+ 2021, Sharma+ 2022, Johnson+ 2022

[Fe/H] gradient

[Fe/H] homogeneous
Empirical landscape of the Milky Way disk-bulge

High-α sequence concentrated to the inner region, thicker spatially

Low-α sequence concentrated to the outer region, thinner spatially

Solar neighbourhood = bimodality

[Fe/H] gradient

[Fe/H] homogeneous

Eilers+ 2022

Also see Nidever+ 2014, Bovy+ 2015, Hayden+ 2015, Queiroz+ 2020, Eilers+ 2021, Sharma+ 2022, Johnson+ 2022
Empirical landscape of the Milky Way disk-bulge

High-\(\alpha\) sequence concentrated to the inner region, thicker spatially

Solar neighbourhood = bimodality

Low-\(\alpha\) sequence concentrated to the outer region, thinner spatially

Also see Nidever+ 2014, Bovy+ 2015, Hayden+ 2015, Queiroz+ 2020, Eilers+ 2021, Sharma+ 2022, Johnson+ 2022
Empirical landscape of the Milky Way disk-bulge

High-\(\alpha\) sequence concentrated to the inner region, thicker spatially

Low-\(\alpha\) sequence concentrated to the outer region, thinner spatially

Solar neighbourhood = bimodality

[\(\text{Fe/H}\)] gradient

[\(\text{Fe/H}\)] homogeneous

Also see Nidever+ 2014, Bovy+ 2015, Hayden+ 2015, Queiroz+ 2020, Eilers+ 2021, Sharma+ 2022, Johnson+ 2022
In the disk, stars are born…and move over time…

- Stars form in clusters, with presumably identical abundances

Armillotta et al., 2018
In the disk, stars are born…and move over time...

- Stars form in clusters, with presumably identical abundances

Armillotta et al., 2018

these disperse in forming the disk

Ruth Nungarrayi Spencer
In the disk, stars are born…and move over time…

- Stars form in clusters, with presumably identical abundances

These disperse in forming the disk

- one prospect to trace back disk assembly — chemical tagging (Bland-Hawthorn & Freeman 2010)
- identify individual stars across the disk from the same birth sites using large vector of chemical abundances
Chemical tagging is difficult - but we can use joint-information
Chemical tagging is difficult - but we can use joint-information

Stellar abundances are very correlated (spectra is low dimensional in the disk)

e.g. Weinberg+ 2021, Ting & Weinberg+ 2021, Griffiths+ 2021, Ness+2022
Chemical tagging is difficult - but we can use joint-information

Stellar abundances are very correlated (spectra is low dimensional in the disk)

   e.g. Weinberg+ 2021, Ting & Weinberg+ 2021, Griffiths+ 2021, Ness+2022

   But we can do powerful population analyses of P(orbits,[Fe/H],[X/Fe])
Chemical tagging is difficult - but we can use joint-information

Stellar abundances are very correlated (spectra is low dimensional in the disk)
e.g. Weinberg+ 2021, Ting & Weinberg+ 2021, Griffiths+ 2021, Ness+2022

But we can do powerful population analyses of P(orbits,[Fe/H],[X/Fe])

“see” cluster dissolution
(and test cluster dissolution processes i.e. Kamdar+ 2019)
Chemical tagging is difficult - but we can use joint-information

Stellar abundances are very correlated (spectra is low dimensional in the disk)
e.g. Weinberg+ 2021, Ting & Weinberg+ 2021, Griffiths+ 2021, Ness+2022

But we can do powerful population analyses of $P(\text{orbits,}[\text{Fe/H}],[\text{X/Fe}])$

“see” cluster dissolution
(and test cluster dissolution processes i.e. Kamdar+ 2019)

[Graphs showing correlation and distribution of abundances]
Chemical tagging is difficult - but we can use joint-information

Stellar abundances are very correlated (spectra is low dimensional in the disk)
e.g. Weinberg+ 2021, Ting & Weinberg+ 2021, Griffiths+ 2021, Ness+2022

But we can do powerful population analyses of P(\text{orbits},[\text{Fe/H}],[\text{X/Fe}])

“see” cluster dissolution
(and test cluster dissolution processes i.e. Kamdar+ 2019)
Chemical tagging is difficult - but we can use joint-information

Stellar abundances are very correlated (spectra is low dimensional in the disk)
e.g. Weinberg+ 2021, Ting & Weinberg+ 2021, Griffiths+ 2021, Ness+2022

But we can do powerful population analyses of P(orbits,[Fe/H],[X/Fe])

“see” cluster dissolution
(and test cluster dissolution processes i.e. Kamdar+ 2019)
The disk is out of equilibrium
The disk is out of equilibrium

- With Gaia - see perturbations from bar, spiral arms and satellites in the velocities & metallicities
The disk is out of equilibrium

- With Gaia - see perturbations from bar, spiral arms and satellites in the velocities & metallicities
The disk is out of equilibrium

- With Gaia - see perturbations from bar, spiral arms and satellites in the velocities & metallicities

Phase-space spiral a signature of a perturbation such as Sagittarius dwarf galaxy tidal interaction (i.e. Binney & Schoenrich 2018, Laporte+ 2019, Khanna+ 2019, Hunt+ 2021, Bland-Hawthorn & Tepper-Garcia+ 2021, Gandhi+ 2021+, others)
The disk is out of equilibrium

- With Gaia - see perturbations from bar, spiral arms and satellites in the velocities & metallicities

Phase-space spiral a signature of a perturbation such as Sagittarius dwarf galaxy tidal interaction (i.e. Binney & Schoenrich 2018, Laporte+ 2019, Khanna+ 2019, Hunt+ 2021, Bland-Hawthorn & Tepper-Garcia+ 2021, Gandhi+ 2021+, others)
The disk is out of equilibrium

- With Gaia - see perturbations from bar, spiral arms and satellites in the velocities & metallicities

Phase-space spiral a signature of a perturbation such as Sagittarius dwarf galaxy tidal interaction (i.e. Binney & Schoenrich 2018, Laporte+ 2019, Khanna+ 2019, Hunt+ 2021, Bland-Hawthorn & Tepper-Garcia+ 2021, Gandhi+ 2021+, others)
The disk is out of equilibrium

- With Gaia - see perturbations from bar, spiral arms and satellites in the velocities & metallicities

Phase-space spiral a signature of a perturbation such as Sagittarius dwarf galaxy tidal interaction (i.e. Binney & Schoenrich 2018, Laporte+ 2019, Khanna+ 2019, Hunt+ 2021, Bland-Hawthorn & Tepper-Garcia+ 2021, Gandhi+ 2021+, others)
The Milky Way Bulge

Simulations predict a bulge formed from the disk will be boxy/X-shaped
The Milky Way Bulge

Simulations predict a bulge formed from the disk will be boxy/X-shaped

N-body disk (Li & Shen 2015)
The Milky Way Bulge

Simulations predict a bulge formed from the disk will be boxy/X-shaped

N-body disk
(Li & Shen 2015)

Dissipational collapse
(Debattista+ 2016)
The Milky Way Bulge

Simulations predict a bulge formed from the disk will be boxy/X-shaped

N-body disk
(Li & Shen 2015)

Dissipational collapse
(Debattista+ 2016)

Cosmological
(Buck+ 2020, Fragkoudi+2020)
The Milky Way Bulge

Simulations predict a bulge formed from the disk will be boxy/X-shaped

& a consequence of orbit families from dynamical instabilities
We see this X-shape in the Milky Way

Milky Way bulge is 27 degrees with respect to our line of sight

*Milky Way bulge is 27 degrees with respect to our line of sight
We see this X-shape in the Milky Way

image credit: (Lang - unwise photometry)

*Milky Way bulge is 27 degrees with respect to our line of sight
We see this X-shape in the Milky Way

image credit: (Lang - unwise photometry)
We see this X-shape in the Milky Way

image credit: (Lang - unwise photometry)
Observing many “rare” stars
Observing many “rare” stars

- **Li-rich stars**: Li-7 is destroyed at $2.5 \times 10^6$ K and depleted at all stages of stellar evolution.
Observing many “rare” stars

- **Li-rich stars**: Li-7 is destroyed at $2.5 \times 10^6$ K and depleted at all stages of stellar evolution
- But - we see Li-rich stars — requiring a production mechanisms — such as planet engulfment
Observing many “rare” stars

- **Li-rich stars**: Li-7 is destroyed at $2.5 \times 10^6$ K and depleted at all stages of stellar evolution.
- But - we see Li-rich stars — requiring a production mechanisms — such as planet engulfment.

Enrichment from planet engulfment:
- on the sub-giant branch
- (1-4-1.6 solar masses)

**Statistical Significance of Enrichment**

![Graph showing statistical significance of enrichment.](image)

*Sores-Furtado+ 2021*
Observing many “rare” stars

- **Li-rich stars**: Li-7 is destroyed at $2.5 \times 10^6$ K and depleted at all stages of stellar evolution.
- But - we see Li-rich stars — requiring a production mechanisms — such as planet engulfment.

Enrichment from planet engulfment:
on the sub-giant branch
(1-4-1.6 solar masses)

Statistical Significance of Enrichment

Sores-Furtado+ 2021
Observing many “rare” stars

- **Li-rich stars**: Li-7 is destroyed at $2.5 \times 10^6$ K and depleted at all stages of stellar evolution
- But - we see Li-rich stars — requiring a production mechanisms — such as planet engulfment

8000 Li-rich stars in LAMOST identified directly from spectra

Enrichment from planet engulfment:
on the sub-giant branch
(1-4-1.6 solar masses)

Sores-Furtado+ 2021

Statistical Significance of Enrichment

Wheeler+ 2021
Observing many “rare” stars

- **Li-rich stars**: Li-7 is destroyed at $2.5 \times 10^6$ K and depleted at all stages of stellar evolution
- But - we see Li-rich stars — requiring a production mechanisms — such as planet engulfment

Enrichment from planet engulfment:
on the sub-giant branch
(1-4-1.6 solar masses)

Statistical Significance of Enrichment

8000 Li-rich stars in LAMOST
identified directly from spectra

Wheeler+ 2021

Sores-Furtado+ 2021
Outline

- The Milky Way Data Revolution
- The Populations in the Milky Way Galaxy in the Gaia era
- Statistical Stellar Ages
How are ages typically measured?

(also see talk by Marina Kounkel)
How are ages typically measured?
(also see talk by Marina Kounkel)

small nearby samples: Gaia will provide here
How are ages typically measured?
(also see talk by Marina Kounkel)

small nearby samples: Gaia will provide here
How are ages typically measured?

(also see talk by Marina Kounkel)

**giants**: asteroseismology: Kepler, CoRoT = mass

small nearby samples: Gaia will provide here

Haywood et al., 2013
How are ages typically measured?

(Also see talk by Marina Kounkel)

Giants: asteroseismology: Kepler, CoRoT = mass

Small nearby samples: Gaia will provide here

Giant masses $\rightarrow$ giant ages

(1)

Proxy for age

Haywood et al., 2013

Sagan, 2022
Main sequence turn-off ages
Main sequence turn-off ages
Main sequence turn-off ages

Gaia will provide high-precision (~10-15 percent) ages for stars within < 2kpc (turnoff)
Main sequence turn-off ages

Gaia will provide high-precision (~10-15 percent) ages for stars within < 2kpc (turnoff)
Main sequence turn-off ages

Gaia will provide high-precision (~10-15 percent) ages for stars within < 2kpc (turnoff)

Turning point (also seen in Feuillet+ 2020, Lu+ 2021) due to Sgr-mass merger + radial migration (Lu+ 2022)
Main sequence turn-off ages

Gaia will provide high-precision (~10-15 percent) ages for stars within < 2kpc (turnoff)

Turning point (also seen in Feuillet+ 2020, Lu+ 2021) due to Sgr-mass merger + radial migration (Lu+ 2022)

Age-date different halo populations:
11,000 halo MSTO H3 + Gaia (Bonaca+ 2020) Ages from MINESWEEPER - Cargile+ 2020)
Main sequence turn-off ages

Gaia will provide high-precision (~10-15 percent) ages for stars within < 2kpc (turnoff)

Turning point (also seen in Feuillet+ 2020, Lu+ 2021) due to Sgr-mass merger + radial migration (Lu+ 2022)

Age-date different halo populations: 11,000 halo MSTO H3 + Gaia (Bonaca+ 2020) Ages from MINESWEEPER - Cargile+ 2020)
Asteroseismic ages for red giants
Asteroseismic ages for red giants

- precision age distributions of $\alpha$-sequences (2000 stars, Silva-Aguirre+ 2018)
Asteroseismic ages for red giants

- precision age distributions of $\alpha$-sequences (2000 stars, Silva-Aguirre+ 2018)
Asteroseismic ages for red giants

- precision age distributions of $\alpha$-sequences (2000 stars, Silva-Aguirre+ 2018)
- age-date halo substructure (21 stars; Borre+ 2022; 10 stars; Grunblatt+ 2021)
Asteroseismic ages for red giants

- precision age distributions of $\alpha$-sequences (2000 stars, Silva-Aguirre+ 2018)
- age-date halo substructure (21 stars; Borre+ 2022; 10 stars; Grunblatt+ 2021)
- age-abundance relations for 8 of 18 elements measured in APOGEE
Asteroseismic ages for red giants

- precision age distributions of $\alpha$-sequences (2000 stars, Silva-Aguirre+ 2018)
- age-date halo substructure (21 stars; Borré+ 2022; 10 stars; Grunblatt+ 2021)
- age-abundance relations for 8 of 18 elements measured in APOGEE
Asteroseismic ages for red giants

- precision age distributions of $\alpha$-sequences (2000 stars, Silva-Aguirre+ 2018)
- age-date halo substructure (21 stars; Borre+ 2022; 10 stars; Grunblatt+ 2021)
- age-abundance relations for 8 of 18 elements measured in APOGEE
  - for 100 red giants with $[\text{Fe/H}] = 0$ (low-$\alpha$ disk)
Asteroseismic ages for red giants

- precision age distributions of $\alpha$-sequences (2000 stars, Silva-Aguirre+ 2018)
- age-date halo substructure (21 stars; Borre+ 2022; 10 stars; Grunblatt+ 2021)
- age-abundance relations for 8 of 18 elements measured in APOGEE
  - for 100 red giants with [Fe/H] = 0 (low-$\alpha$ disk)
  - intrinsic dispersion around the age-[X/Fe] relations very small = 0.02 dex

\[ \text{Normalized distributions} \]
Asteroseismic ages for red giants

- precision age distributions of $\alpha$-sequences (2000 stars, Silva-Aguirre+ 2018)
- age-date halo substructure (21 stars; Borre+ 2022; 10 stars; Grunblatt+ 2021)
- age-abundance relations for 8 of 18 elements measured in APOGEE
  - for 100 red giants with $[\text{Fe/H}] = 0$ (low-\(\alpha\) disk)
  - intrinsic dispersion around the age-$[X/\text{Fe}]$ relations very small = 0.02 dex

invert age-abundance gradients —> to get ages, given abundances —> also see
  - Moya+ 2022
  - Feuillet+2018, Hayden+2021, Sharma+ 2021

Melissa Ness
Sagan, 2022
We can now measure ages for giants spectroscopically.

regime change:
from stars in the solar
neighbourhood....
We can now measure ages for giants spectroscopically.

regime change: from stars in the solar neighbourhood....

large, vast maps ↓

20kpc

6kpc
We can now measure ages for giants spectroscopically.

Regime change: from stars in the solar neighbourhood....

Large, vast maps ↓

APOGEE

Sagan, 2022

Melissa Ness
We can now measure ages for giants spectroscopically.

regime change: from stars in the solar neighbourhood....

large, vast maps ↓

\[ Z=0.020 \ Y=0.280 \]

APOGEE

20kpc
6kpc
Reference set of stars with known mass
Reference set of stars with known mass

> 6000 red giant stars in APOGEE also observed by Kepler (mass from asteroseismology)
(Pinsonneault+ 2018)
Reference set of stars with known mass

> 6000 red giant stars in APOGEE also observed by Kepler (mass from asteroseismology) (Pinsonneault+ 2018)

Used to create a data-driven model e.g. with *The Cannon* (Ness et al., 2015)
Reference set of stars with known mass

> 6000 red giant stars in APOGEE also observed by Kepler (mass from asteroseismology) (Pinsonneault+ 2018)

Used to create a data-driven model e.g. with The Cannon* (Ness et al., 2015)

*also The DD-Payne (Xiang+ 2019), Bingo (Ciucă+ 2021), AstroNN (Leung+2019)
Reference set of stars with known mass

> 6000 red giant stars in APOGEE *also* observed by Kepler (mass from asteroseismology) (Pinsonneault+ 2018)

Used to create a data-driven model e.g. with *The Cannon* (Ness et al., 2015)

*also The DD-Payne (Xiang+ 2019), Bingo (Ciuca+ 2021), AstroNN (Leung+2019)

Data-driven modeling: build a model using some subset of data & apply that model to the full data
Reference set of stars with known mass

> 6000 red giant stars in APOGEE also observed by Kepler (mass from asteroseismology) (Pinsonneault+ 2018)

Used to create a data-driven model e.g. with The Cannon* (Ness et al., 2015)

*also The DD-Payne (Xiang+ 2019), Bingo (Ciuca+ 2021), AstroNN (Leung+2019)

Data-driven modeling: build a model using some subset of data & apply that model to the full data

Data-driven models:
- label “bad” data using models built from “good data” (bad = low SNR, low-resolution)
- extract “new” information from data
- see where the information resides in spectra
Reference set of stars with known mass

> 6000 red giant stars in APOGEE also observed by Kepler (mass from asteroseismology) (Pinsonneault+ 2018)

Used to create a data-driven model e.g. with The Cannon* (Ness et al., 2015)

*also The DD-Payne (Xiang+ 2019), Bingo (Ciuca+ 2021), AstroNN (Leung+2019)

Data-driven modeling: build a model using some subset of data & apply that model to the full data

Data-driven models:

- label “bad” data using models built from “good data” (bad = low SNR, low-resolution)
- extract “new” information from data
- see where the information resides in spectra

An incomplete list…

How *The Cannon* works on spectra (and other data-driven label transfer)

*see also DD-Payne Ting+ 2019, Xiang+ 2019, ASTRO-NN Leung+ 2018*
How *The Cannon* works on spectra (and other data-driven label transfer)

Relies on a *subset* of $n$ reference stars in the survey, with known labels (Teff, logg, [Fe/H]…)

*see also DD-Payne Ting+ 2019, Xiang+ 2019, ASTRO-NN Leung+ 2018*
How *The Cannon* works on spectra (and other data-driven label transfer)

Relies on a *subset* of $n$ reference stars in the survey, with known labels (Teff, logg, [Fe/H]…)

*see also DD-Payne Ting+ 2019, Xiang+ 2019, ASTRO-NN Leung+ 2018*
How *The Cannon* works on spectra (and other data-driven label transfer)

Relies on a *subset* of $n$ reference stars in the survey, with known labels (Teff, logg, [Fe/H]…)

*see also DD-Payne Ting+ 2019, Xiang+ 2019, ASTRO-NN Leung+ 2018*
How *The Cannon* works on spectra (and other data-driven label transfer)

Relies on a *subset* of $n$ reference stars in the survey, with known labels (Teff, logg, [Fe/H]…)

Uses $n$ reference objects with known labels $l$ to build a model *Training*

\[ f_{n\lambda} = g(l_n|\theta_\lambda) + \text{noise} \]

*see also DD-Payne Ting+ 2019, Xiang+ 2019, ASTRO-NN Leung+ 2018*
How *The Cannon* works on spectra (and other data-driven label transfer)

Relies on a *subset* of $n$ reference stars in the survey, with known labels (Teff, logg, [Fe/H]…)

Uses $n$ reference objects with known labels $l$ to build a model *Training*

$$f_{n\lambda} = g(l_n|\theta_\lambda) + \text{noise}$$

*see also DD-Payne Ting+ 2019, Xiang+ 2019, ASTRO-NN Leung+ 2018*
How *The Cannon* works on spectra (and other data-driven label transfer)

Relies on a *subset* of $n$ reference stars in the survey, with known labels (Teff, logg, [Fe/H]…)

Uses $n$ reference objects with known labels $l$ to build a model *Training*

$$f_{n\lambda} = g(l_n|\theta_{\lambda}) + \text{noise}$$

Teff, logg, [Fe/H]

*see also DD-Payne Ting+ 2019, Xiang+ 2019, ASTRO-NN Leung+ 2018*
How *The Cannon* works on spectra (and other data-driven label transfer)

Relies on a *subset* of \( n \) reference stars in the survey, with known labels (Teff, logg, [Fe/H]…)

Uses \( n \) reference objects with known labels \( l \) to build a model *Training*

\[
f_{n\lambda} = g(l_n | \theta_\lambda) + \text{noise}
\]

*Teff, logg, [Fe/H]*

*photon noise + fit of spectral model*

*spectral model*

*see also DD-Payne Ting+ 2019, Xiang+ 2019, ASTRO-NN Leung+ 2018*
How *The Cannon* works on spectra (and other data-driven label transfer)

Relies on a *subset* of $n$ reference stars in the survey, with known labels (Teff, logg, [Fe/H]…)

Uses $n$ reference objects with known labels $l$ to build a model *Training*

\[ f_{n\lambda} = g(l_n|\theta_\lambda) + \text{noise} \]

Relates stellar labels $l$ to stellar flux $f$, at each wavelength $\lambda$.

*see also DD-Payne Ting+ 2019, Xiang+ 2019, ASTRO-NN Leung+ 2018*
How *The Cannon* works on spectra (and other data-driven label transfer)

Relies on a subset of \( n \) reference stars in the survey, with known labels (Teff, logg, [Fe/H]…)

\[
f_{n\lambda} = g(l_{n|\theta_\lambda}) + \text{noise}
\]

Uses \( n \) reference objects with known labels \( l \) to build a model *Training*

Relates stellar labels \( l \) to stellar flux \( f \), at each wavelength \( \lambda \).

That model is then used to infer the stellar labels for the remaining stars in the survey *Test*

*see also DD-Payne Ting+ 2019, Xiang+ 2019, ASTRO-NN Leung+ 2018*
The APOGEE example: to infer \((\text{Teff}, \log g, [\text{Fe/H}])\)

\[ R = 22,500, \text{H-band (1.5-1.7\,\mu m)} \]
The APOGEE example: to infer \((T_{\text{eff}}, \log g, [\text{Fe/H}])\)

\[ R = 22,500, \text{H-band (1.5-1.7}\mu \text{m}) \]

**Training set:** 540 open and globular cluster stars, labels from ASPCAP, \(-2.5 < [\text{Fe/H}] < 0.5\)

labels of \(T_{\text{eff}}, \log g, [\text{Fe/H}]\)
The APOGEE example: to infer \((T_{\text{eff}}, \log g, [\text{Fe/H}])\)

**Training set:** 540 open and globular cluster stars, labels from ASPCAP, \(-2.5 < [\text{Fe/H}] < 0.5\)

labels of \(T_{\text{eff}}, \log g, [\text{Fe/H}]\)

\[
R = 22,500, \text{ H-band (1.5-1.7}\mu\text{m})
\]

\[
f_{n\lambda} = a_{\lambda} + b_{\lambda}(T_{\text{eff}})_n + c_{\lambda}(\log g)_n + d_{\lambda}([\text{Fe/H}]_n + e_{\lambda}(T_{\text{eff}}\cdot \log g)_n + f_{\lambda}(T_{\text{eff}}\cdot [\text{Fe/H}])_n + g_{\lambda}([\text{Fe/H}]\cdot \log g)_n + h_{\lambda}(T_{\text{eff}})^2_n + i_{\lambda}(\log g)^2_n + j_{\lambda}([\text{Fe/H}])^2_n + \text{noise}_\lambda
\]
The APOGEE example: to infer \((T_{\text{eff}}, \log g, [\text{Fe/H}])\)

\[ R = 22,500, \text{ H-band (1.5-1.7\,\mu m)} \]

**Training set:** 540 open and globular cluster stars, labels from ASPCAP, \(-2.5 < [\text{Fe/H}] < 0.5\)

labels of \(T_{\text{eff}}, \log g, [\text{Fe/H}]\)

**Test set:**
120,000 stars from APOGEE

\[
f_{n\lambda} = a_{\lambda} + b_{\lambda}(T_{\text{eff}})_n + c_{\lambda}(\log g)_n + d_{\lambda}([\text{Fe/H}])_n + e_{\lambda}(T_{\text{eff}} \cdot \log g)_n + f_{\lambda}(T_{\text{eff}} \cdot [\text{Fe/H}])_n + g_{\lambda}([\text{Fe/H}] \cdot \log g)_n + h_{\lambda}(T_{\text{eff}})^2_n + i_{\lambda}(\log g)^2_n + j_{\lambda}([\text{Fe/H}])^2_n + \text{noise}_{\lambda}
\]
The APOGEE example: to infer \((\text{Teff}, \text{logg}, [\text{Fe/H}])\)

R = 22,500, H-band (1.5-1.7\(\mu\)m)

Training set: 540 open and globular cluster stars, labels from ASPCAP, -2.5 < [Fe/H] < 0.5 labels of Teff, logg, [Fe/H]

Test set: 120,000 stars from APOGEE

\begin{align*}
\text{f}_{n\lambda} &= a_{\lambda} + b_{\lambda}(\text{Teff})_n + c_{\lambda}(\text{logg})_n + d_{\lambda}([\text{Fe/H}])_n + \\
& \quad e_{\lambda}(\text{Teff} \cdot \text{logg})_n + f_{\lambda}(\text{Teff} \cdot [\text{Fe/H}])_n + g_{\lambda}([\text{Fe/H}] \cdot \text{logg})_n + \\
& \quad h_{\lambda}(\text{Teff})^2_n + i_{\lambda}(\text{logg})^2_n + j_{\lambda}([\text{Fe/H}]^2)_n + \text{noise}_{\lambda} \\
\text{f}_{m\lambda} &= a_{\lambda} + b_{\lambda}(\text{Teff})_m + c_{\lambda}(\text{logg})_m + d_{\lambda}([\text{Fe/H}])_m + \\
& \quad e_{\lambda}(\text{Teff} \cdot \text{logg})_m + f_{\lambda}(\text{Teff} \cdot [\text{Fe/H}])_m + g_{\lambda}([\text{Fe/H}] \cdot \text{logg})_m + \\
& \quad h_{\lambda}(\text{Teff})^2_m + i_{\lambda}(\text{logg})^2_m + j_{\lambda}([\text{Fe/H}]^2)_m + \text{noise}_{\lambda}
\end{align*}
How well does this work?
How well does this work?

(i) Take-one-out test to measure how well you can infer the labels
How well does this work?

(i) Take-one-out test to measure how well you can infer the labels
How well does this work?

(i) Take-one-out test to measure how well you can infer the labels

(ii) Examine generated model vs observed spectra for test objects
How well does this work?

(i) Take-one-out test to measure how well you can infer the labels

(ii) Examine generated model v observed spectra for test objects
To learn age: reference set of stars with known mass
To learn age: reference set of stars with known mass

> 6000 red giant stars in APOGEE also observed by Kepler - APOKASC sample
Pinsonneault+ 2018 — mass from asteroseismology
To learn age: reference set of stars with known mass

> 6000 red giant stars in APOGEE also observed by Kepler - APOKASC sample
Pinsonneault+ 2018 — mass from asteroseismology

\[
\ln = \text{Teff, logg, [Fe/H], } [\alpha/\text{Fe}], \text{ mass}
\]
To learn age: reference set of stars with known mass

> 6000 red giant stars in APOGEE *also* observed by Kepler - **APOKASC sample**
Pinsonneault+ 2018 — mass from asteroseismology

\[ \ln = \text{Teff, logg, [Fe/H], [\alpha/Fe], mass} \]

stellar parameters from APOGEE spectra with ASPCAP
To learn age: reference set of stars with known mass

> 6000 red giant stars in APOGEE also observed by Kepler - APOKASC sample
Pinsonneault+ 2018 — mass from asteroseismology

\[ \ln = \text{Teff, logg, [Fe/H], } [\alpha/Fe], \text{ mass} \]

stellar parameters from APOGEE spectra with ASPCAP

\[ M = \left( \frac{\nu_{\text{max}}}{\nu_{\text{max,\odot}}} \right)^3 \left( \frac{\Delta \nu}{\Delta \nu_{\odot}} \right)^{-4} \left( \frac{T_{\text{eff}}}{T_{\text{eff,\odot}}} \right)^{1.5} \]
To learn age: reference set of stars with known mass

> 6000 red giant stars in APOGEE also observed by Kepler - APOKASC sample
Pinsonneault+ 2018 — mass from asteroseismology

\[ \ln = \text{Teff}, \log g, [\text{Fe/H}], [\alpha/\text{Fe}], \text{mass} \]

stellar parameters from APOGEE spectra with ASPCAP

\[ M = \left( \frac{\nu_{\text{max}}}{\nu_{\text{max,\odot}}} \right)^3 \left( \frac{\Delta \nu}{\Delta \nu_{\odot}} \right)^{-4} \left( \frac{T_{\text{eff}}}{T_{\text{eff,\odot}}} \right)^{1.5} \]

— Cannon model that is used to determine masses for rest of APOGEE giants —
To learn age: reference set of stars with known mass

> 6000 red giant stars in APOGEE also observed by Kepler - **APOKASC sample**
Pinsonneault+ 2018 — **mass from asteroseismology**

\[ \ln = \text{Teff, logg, [Fe/H], [\alpha/Fe], mass} \]

stellar parameters from APOGEE spectra with ASPCAP

\[ M = \left( \frac{\nu_{\text{max}}}{\nu_{\text{max,\odot}}} \right)^3 \left( \frac{\Delta \nu}{\Delta \nu_{\odot}} \right)^{-4} \left( \frac{T_{\text{eff}}}{T_{\text{eff,\odot}}} \right)^{1.5} \]

— Cannon model that is used to determine masses for rest of APOGEE giants —

Go from mass to age with stellar evolution models
Origin of mass information

![Graph showing normalized flux vs. wavelength for different masses. The graph compares the normalized flux of two different masses: 0.7 Msun (dashed black line) and 3.3 Msun (solid blue line). The wavelength is measured in Angstroms (Å).]
Origin of mass information

Martig et al., 2016, (see also Masseron & Gilmore 2015)

mass dependent dredge up -> alters CN abundances
Origin of mass information

Martig et al., 2016, (see also Masseron & Gilmore 2015)
mass dependent dredge up -> alters CN abundances

Models can leverage this indirectly or directly using [C/N/-age] calibration with asteroseismic stars or clusters
e.g. Spoo+ 2022, Casali+ 2017, Martig+ 2016
Ages: inside out formation and flaring of the disk

75,000 stars from APOGEE DR16
Ages: inside out formation and flaring of the disk

75,000 stars from APOGEE DR16
Ages: inside out formation and flaring of the disk

75,000 stars from APOGEE DR16

(Ness et al., 2016 and also see Martig et al., 2016, Das & Sanders et al., 2018, Lu+2021)
Ages: inside out formation and flaring of the disk

75,000 stars from APOGEE DR16

Milky Way Mapper - Ages for 4 million stars including hundreds of thousands in the bulge & propagate ages to other surveys given stars in common

(Ness et al., 2016 and also see Martig et al., 2016, Das & Sanders et al., 2018, Lu+2021)
Putting everything together - ages are key
Putting everything together - ages are key
Putting everything together - ages are key

- Measure **radial migration & inside-out formation** of the disk (e.g. Frankel+ 2018, 2019)
- **Modelling the joint abundance-age-spatial** distribution across the disk (e.g. Sharma+ 2021)
- Measuring **dynamical heating** across the Milky Way (e.g. Mackereth+ 2019, Ting+ 2019)
Putting everything together - ages are key

- Measure **radial migration & inside-out formation** of the disk (e.g. Frankel+ 2018,2019)
- Modelling the joint abundance-age-spatial distribution across the disk (e.g. Sharma+ 2021)
- Measuring **dynamical heating** across the Milky Way (e.g. Mackereth+ 2019, Ting+ 2019)
Putting everything together - ages are key

- Measure **radial migration & inside-out formation** of the disk (e.g. Frankel+ 2018, 2019)

- **Modelling the joint abundance-age-spatial** distribution across the disk (e.g. Sharma+ 2021)

- Measuring **dynamical heating** across the Milky Way (e.g. Mackereth+ 2019, Ting+ 2019)

- The relationship between **orbits and abundances and ages** (e.g. Gaia-Collaboration 2022, Viscasillas-Vazquez+ 2022, Manea+ 2022, Espinoza-Rojas+ 2021, Lu+ 2021, Hayden+ 2020, Gandhi+ 2019, Beane+ 2018)
Putting everything together - ages are key

- Measure **radial migration & inside-out formation** of the disk (e.g. Frankel+ 2018, 2019)
- **Modelling the joint abundance-age-spatial** distribution across the disk (e.g. Sharma+ 2021)
- Measuring **dynamical heating** across the Milky Way (e.g. Mackereth+ 2019, Ting+ 2019)

- The relationship between **orbits and abundances and ages** (e.g. Gaia-Collaboration 2022, Viscasillas-Vazquez+ 2022, Manea+ 2022, Espinoza-Rojas+ 2021, Lu+ 2021, Hayden+ 2020, Gandhi+ 2019, Beane+ 2018)
Putting everything together - ages are key

- Measure **radial migration & inside-out formation** of the disk (e.g. Frankel+ 2018, 2019)
- **Modelling the joint abundance-age-spatial** distribution across the disk (e.g. Sharma+ 2021)
- Measuring **dynamical heating** across the Milky Way (e.g. Mackereth+ 2019, Ting+ 2019)

- The relationship between **orbits and abundances and ages** (e.g. Gaia-Collaboration 2022, Viscasillas-Vazquez+ 2022, Manea+ 2022, Espinoza-Rojas+ 2021, Lu+ 2021, Hayden+ 2020, Gandhi+ 2019, Beane+ 2018)

- **Age-metallicity** relations across the disk (e.g. Xiang+ 2022, Lu+ 2021, Feuillet+ 2019)
- **Age dating the disk z-vz spiral** from a perturbing impulse (e.g. Bland-Hawthorn+ 2019)
- **Age dating the bulge compared to the disk** (e.g. Bovy+ 2019, Sit+ 2020, Hasselquist+ 2020, Surot+ 2019, Valenti+ 2018)
Planet engulfment signatures: hidden in abundances of mono-age-metallicity groups?
Planet engulfment signatures: hidden in abundances of mono-age-metallicity groups?

*open clusters with 20 measured abundances*
Planet engulfment signatures: hidden in abundances of mono-age-metallicity groups?

open clusters with 20 measured abundances

A metric to compare the ‘chemical distance’ of pairs of stars within open clusters
Planet engulfment signatures: hidden in abundances of mono-age-metallicity groups?

A metric to compare the ‘chemical distance’ of pairs of stars within open clusters

\[
\chi^2_{nn'} = \sum_{i=1}^{I} \frac{[x_{ni} - x_{n'i}]^2}{\sigma_{ni}^2 + \sigma_{n'i}^2}.
\]

where the indices \( n \) and \( n' \) denote the two stars, \( i \) the elements, and \( x_{ni} \) the measurements with uncertainty \( \sigma_{ni} \).
Planet engulfment signatures: hidden in abundances of mono-age-metallicity groups?

A metric to compare the ‘chemical distance’ of pairs of stars within open clusters

\[
\chi^2_{nn'} = \sum \frac{[x_{ni} - x_{n'i}]^2}{\sigma_{ni}^2 + \sigma_{n'i}^2}.
\]

where the indices \(n\) and \(n'\) denote the two stars, \(i\) the elements, and \(x_{ni}\) the measurements with uncertainty \(\sigma_{ni}\).
Planet engulfment signatures: hidden in abundances of mono-age-metallicity groups?

**A metric to compare the ‘chemical distance’ of pairs of stars within open clusters**

\[
\chi^2_{nn'} = \sum_{i=1}^{I} \frac{[x_{ni} - x_{n'i}]^2}{\sigma_{ni}^2 + \sigma_{n'i}^2}.
\]

where the indices \( n \) and \( n' \) denote the two stars, \( i \) the elements, and \( x_{ni} \) the measurements with uncertainty \( \sigma_{ni} \).

Most pairs are chemically indistinguishable in 20 elements.
Planet engulfment signatures: hidden in abundances of mono-age-metallicity groups?

A metric to compare the ‘chemical distance’ of pairs of stars within open clusters

$\chi^2_{nn'} = \sum_{i=1}^{I} \frac{[x_{ni} - x_{n'i}]^2}{\sigma^2_{ni} + \sigma^2_{n'i}}$.

where the indices $n$ and $n'$ denote the two stars, $i$ the elements, and $x_{ni}$ the measurements with uncertainty $\sigma_{ni}$.

most pairs are chemically indistinguishable in 20 elements

But some pairs of stars born together have large abundance differences. Why? (e.g. planet engulfment? Oh+ 2018)

Ness et al., 2018
Next Frontiers

architectures <- ages, kinematics, abundances
Next Frontiers

architectures <- ages, kinematics, abundances

Gaia
Next Frontiers

architectures <- ages, kinematics, abundances
Next Frontiers

architectures <- ages, kinematics, abundances

Gaia + Ground based spectroscopic surveys

Sagan, 2022
Next Frontiers

architectures <- ages, kinematics, abundances

Gaia

Ground based spectroscopic surveys
Next Frontiers

architectures <- ages, kinematics, abundances
Next Frontiers

architectures <- ages, kinematics, abundances

Gaia + Ground based spectroscopic surveys + opportunity <- ages, kinematics, abundances

JWST
TESS
Kepler
ELTs
Nancy Grace Roman Space Telescope
Vera Rubin Observatory