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TOPICS TO BE COVERED

What we want to know about young stars (in the context of disks/planets).

What we can observe.

What we can infer from the observed quantities.

Reliability of those inferences.

graphic by R. Hurt
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(slide from my 2014 sagan talk)

ARE THOSE FAINT OBJECTS
PLANETS OR BROWN DWARES?

-
GJ 504b




CARTOON OF AN INDIVIDUAL YOUNG STAR
ACCRETION/OUTFLOW SYSTEM




YSO SEDS
CONSIST OF
UNDERLYING
STELLAR
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_|_

CIRCUMSTELLAR
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for a given geometry, there are
many different possible SEDs.

AFYy [relative]

[Robitaille 2017]

Fig. 2. A subset of 2000 SEDs for each model set, normalized to the total luminosity of each SED.
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HOW CAN WE STUDY THE UNDERLYING STAR

Log relative intensity
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[Barensten et al. 201 3]

line emission and
continuum “veiling”
complicates
spectral typing.

\\\
continuum excess OEEontU =
uu emission (T ~ 8000 K); broad emission lines

also distorts some narrow lines; (T ~ 10*K)
X-rays?

broadband colors.

WITH ALL THIS EXTRA MUCK?

(c) DN Tau (107 Mg<yr) s s

low-v disk

disk wind/jet
isk wind/je ok

inner hot
dust “wall”

Fe |

dusty disk

[Hartmann, Herczeg, Calvet 2016]




THE INFRARED MILKY WAY: GLIMPSE /MIPSGAL (3.6-24 microns) Q’%’ﬁlléé@
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STELLAR AGES VIA HRD ARE COMPARABLE TO
(SUB-)CLUSTER EXPANSION TIMES

Median L(T) = ~1 Myr age

Relative to median age:
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But A(log L )= 0.3-0.4 I

Why still so large given

rigorous membership vetting? [ - . ol
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d ~2.7kpc

Age spreads and sequencing of star formation.

IMF and evidence for variations.

Mass segregation.
Addressing these questions requires
Multiplicity fractions and binary parameters.

understanding stellar properties!

Planet formation processes and timescales.




WHAT CAN WE MEASURE AND DERIVE?

Parallax =» distance (amazing!)
Positions and Proper Motions = clustering and 2D kinematics
Photometry =» spectral energy distribution

excess relative to a(n extincted) stellar model = disk properties

variability = radiative and dynamical processes

Spectroscopy > 4 temperature and perhaps gravity

radial velocity (variability implies multiplicity)
rotational velocity

composition (if you work hard)




WHAT ARE WE TRYING TO INFER?

AGE:
* How old is that star / disk / planet?

" How do stars evolve, e.g. M(t) at early times or L(t), Teff(t), R(t), etc., or R(M) vs t
* How do disks evolve and form planets?
" How do planets evolve, e.g.

" M(t) at early times or L(t), Teff(t), R(t), etc., or R(M) vs t

* dynamically, in a planetary/debris system

* | predict there will be many many plots at this Sagan conference showing some
star/disk /planet parameter as a function of age.

* Bear in mind that ages remain uncertain at the 20-200+% level. Yes, all ages.




WHAT ARE WE TRYING TO INFER?

TEMPERATURE as a basic stellar characteristic, often a proxy for mass

MASS e.g. for assessing MQ/M] from RV measurements

RADIUS e.g. for assessing Ro/R1 from transit/eclipse measurements

LUMINOSITY e.g. for interpreting an L|R/L>x< measurement

(more stellar parameters later)




STELLAR CONTRACTION THEORY - HRD

|Oglo(L/L : )

Despite improvements, pre-main sequence evolutionary tracks are not yet
able reproduce young cluster luminosity vs effective temperature sequences.

They remain our most useful tool however.
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Fig. 3. Comparison of our standard solar metallicity models with other available grids as described in Table 4 and indicated on each panel.




SED or (mags + colors) q
- T . Can influence colors/spectrum. observational errors
i 1 €l eeaEin = Also causes variability.

Spectral type (or temperature)

l +
|Og Teff SpT => stellar temperature = f (spectral class, luminosity class)

systematic differences

Intrinsic colors = f (temperature, gravity) among various

Reddening law / Extinction = f (wavelength, grain properties) ﬂ calibration scales

from lookup tables SED or (mag + BC)

AV + Distance

l accumulated error in

observations,
variability, accretion

log L/Lgyn

log L/Lyn + log Teff effects, calibration
systematics, and

from above . a
uncertain distance

+

Can be straight interpolation or

bayesian probability distribution differences in track
pre-main sequence evolutionary tracks and isochrones ﬁ physics leads to

systematic difference
from theory M/Msun Gnd Gge/Myr Y

in mass/age results
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log(L/Lsun)

log(L/Lsun)

REQUIRING KINEMATIC MEMBERSHIP AND USING
INDIVIDUAL PARALLAXES REDUCES LUMINOSITY SPREADS
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REQUIRING KINEMATIC MEMBERSHIP AND USING
INDIVIDUAL PARALLAXES REDUCES LUMINOSITY SPREADS
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Figure 8. Dispersion in log L/Le with log Tess. Pre-Gaia values are in the top panel, and post-Gaia values in the bottom. Hillenbrand et al.
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reach the maximum spread expected from propagation of various error sources (gold hatched region). The yellow hatched region In prepara tion
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HOWEVER, IT’S NOT QUITE
THAT EASY

Young stars are active, with blue-ing at short wavelengths.
* underlying spottedness

" superposed accretion effects.

Young stars have surrounding dust/gas, causing red excess at longer wavelengths.

Debate regarding wavelengths at which we can measure mostly the stellar
photosphere (vs disk /accretion effects) and hence how to best determine

" extinction correction to account for reddening

" bolometric correction from measured flux to luminosity.

Complication of variability: Median RMS values in the ONC:
" use median magnitude? <0.19> mag at 0.8 um
" use bright state for dippers/faders? <0.14> mag at 1.2, 1.6, 2.2 um
* use faint state for bursters? <0.07> mag at 3.6, 4.5 um

High variability tail extends to >2 mag!




Optical [Robinson et al. 201 9]
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HOW ACCURATE ARE THE HR DIAGRAMS?
(VEILING)

Accretion systematically affects spectral types, Accretion causes scatter in luminosities
biasing them earlier, implying hotter temperatures. with typical A(log L) < 0.15.
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HOW ACCURATE ARE THE HRDS
VARIABILITY)

Similar A(log L ) = 0.3 dex luminosity

log (L/Loe)
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Figure 14. Photometric variability statistic o, vs mean
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for strongly variable stars, green-filled circles for moderately Figure 20. H-R diagram for young stars with photometric

variable stars, and open circles for stars with low variability. variability data and showing variability at low (top panel),
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[ Fang et CII. 20 20] evolutionary tracks are the same as in Figure 12.
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A CONTINUUM OF ACCRETION
BURST BEHAVIOR

~15% of objects with disks are “bursty” with
both aperiodic and quasi-periodic behavior.

EPIC 204830786 / 2MASS J16075796-2040087: Q=1.0, M=-0.67

EPIC 203954898 / 2MASS )16263682-2415518: Q=0.61, M=-1.35
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EPIC 204908189 / 2MASS J16111330-2019029: Q=0.76, M=-0.59
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[Cody et al. 2017]




ALSO A CONTINUUM

OF DIPPING/FADING
BEHAVIOR

Quasi-periodic Examples

periodic Examples
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Figure 1. Multi-wavelength light curve of PTF 10nvg with UT dates indicated above the figure. From bottom to top the data streams represent variability in the R band
(red; data from PTF) and in the J, H, and K bands (black, purple, and blue respectively; data from PAIRITEL). Error bars are shown, but the uncertainty in magnitude
is typically smaller than the size of the symbols. During faint states when the source was not detected in individual frames, photometry was measured from stas

PTF images (red squares. in the 21-23 mag range): horizontal error bars indicate the time range of measurements included in each stack.



VARIABILITY AMPLITUDES DECLINE WITH AGE

accretion and high levels of activity Rebull et al.

with amplitudes ~0.1 — 1 mag activity and spofs

with amplitudes ~0.01-0.1 mag
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graphic by M. Romanova

graphic by S. Meibom




ALL STARS ARE VARIABLE AT SOME LEVEL
-- BUT YOUNG STARS DO STAND OUT

. pre-main
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Fig. 8. Variable object fraction in the CaMD shown as a colour scale as labelled. This figure is not based on variable objects from the literature.
Instead, variability is detected directly using Gaia data and employing supervised classification for sources with at least 20 observations in the

[Eyer et al. 2019]




A FEW MAIN MESSAGES THUS FAR

HR diagrams remain a valuable tool for deriving R/Rsun, M/Msun, and AGE.

* care needed when placing young stars

Origin of luminosity spreads still not entirely clear.

" not readily explained by observational errors or photometric variability or distance spreads

Empirical isochrones, from run of median L(T) with T, cross theoretical isochrones.

" still missing ingredients in evolutionary theory — currently thought to be accretion history

There is an important check on the models, which is to measure M,R directly.
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FUNDAMENTALLY DERIVED MASS AND RADIUS

Cluster member DLEBS are extremely valuable as tests of theory.

Match to isochrones in R vs M is pretty good

However, discrepancies in L vs T, which are radiative properties rather than fundamental.
Typically need to shift model temperatures cooler by ~150-200 K to match data.

* spots / magnetism?

Brown dwarfs Low-mass stars Solar-type stars High-mass stars

Field
Pre-MS
Upper Sco

Pleiades [DCIVICI &

Praesepe

—— Hillenbrand




OTHER OBSERVED PROPERTIES
OF YOUNG STARS

Rotation
Activity
Magnetic field

Lithium

Can be used as age proxies, with caution.

Main advantage is diagnostic power where HR diagram is powerless (on MS).




Gaitee A.J. Hussain & Evelyne Alecian

®

Radiative

)
! @
~

Conv. core + Convective

ALl 1 1

1.5

/lllllli

1.0

L L

0.5:

[ Rad. envelope

0.0

lllll
llllllllllllllllllll

b

_O.5=;L;11‘1‘;11L‘.1.1;L
3.90 3.85 3.80 3.75 3.70 3.65 3.60
log(Teﬂ)

.\.
| . e " A 1 A e A . 1 A

Figure 1. H-R diagram showing Behrend & Maeder (2001) pre-main sequence evolutionary
tracks for stellar masses up to 4 M. The dashed blue line marks the position of the birthline.
All stars with masses less than 3.5 Mg will undergo a stage along their pre-main sequence
evolution in which they have either partially or fully convective interiors. A star with a mass
of 1.5 Mg or more will be subject to several fundamental changes in their internal structure,
having a fully convective interior near the birthline, to developing a radiative core, to becoming
fully radiative and finally developing a convective core just before reaching the Zero Age Main
Sequence (black dot-dashed line).




PRE-MS EVOLUTIONARY THEORY

Amard et al.: Grid of rot4
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Fig. 5. Kippenhahn diagram showing the evolution of the internal struc-
ture of the non-rotating solar metallicity models of 0.3 (top), 0.5, 1.0
and 1.5 M, (bottom) from the PMS up to the end of the main sequence.
The upper line represents the surface radius and hatched areas refer to
convective regions. The green line displays the H-burning limit. The five
pink vertical lines indicate the ages of open clusters used as markers of
the evolution.
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Fig. 4. HR diagram of solar metallicity models without (dashed black
line) and with rotation (solid colored lines; here we show the fast ro-
tators). The values of the surface velocity normalized to the break-up
value (€2/€Q;) increase from blue to red as shown on the right color
bar. The black triangles indicate when the rotating models are released
from their disc. The red lines indicate the standard (dashed) and rotating
(solid) ZAMS.




PERIOD-AGE EVOLUTION VS STELLAR COLOR (MASS)

Rebull et al. 2016, 2017, 2018, 2019...

Rho Oph (~1 Myr) Taurus (~2 Myr Upper Sco (~8 Myr) BPMG (~20 Myr) Pleiades (~125 Myr) Hyades (~790 Myr) Praesepe (~790 Myr
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Youngest stars have rotation regulated by “disk locking” — no period-mass relation.
Once free of disk, spin-up en route to the main sequence (30 Myr @1 Msun).
On main sequence, spin-down due to angular momentum loss via winds.

Mass effects:
* A,F stars have no dynamo and therefore no spots, so no measured periods.
* G,K, and early M stars exhibit age-dependent period-mass relationship.
* late M stars (fully convective) remain rapidly rotating for at least ~1 Gyr.
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rough mass-dependency.

roughly monotonoic spin-down above 0.5 Msun.

however, some stars are slow to catch on, and
remain rapid rotators far longer than their
presumably co-eval cluster peers.

below 0.5 Msun, a wide range
of rotation rates is maintained

up to TGyr or more.

Median P, (days)

_— Nb(, 2547 35 Myr
ades 125 Myr
N(‘r 2516 150 Myr
— M50 150 Myr
— M37 500 Myr
— Praesepe 700 Myr
w— NGC 6811 950 Myr

[Godoy-Rivera et al. 2021] LR e Ve “i\/Ia;; [VI'




AGES FROM PROBES OF
ANGULAR MOMENTUM

Clusters + Kepler Distribution
G2 KO Ks MO M3

1 Gyr: field stars

.7 Gyr: Ruprecht 147

.5 Gyr: NGC 6819

4 Gyr: NGC 752

.0 Gyr: NGC 6811
Myr: Praesepe
Myr: Pleiades

measurements:

- time series photometry
=>» period

- high dispersion spectrum
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=>» rotational velocity
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[Curtis et al 2020]




STELLAR SURAFCE ACTIVITY ALSO
CHANGES WITH MASS/AGE

© (L) Convective interior
' (®) Radiative interior

>

Luminosity

Temperature

<

Alecian et al.



PROBES OF “ACTIVITY™

Xray luminosity

UV continuum excess

Chromospheric lines

Flaring
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ACTIVITY-AGE RELATIONS =2 P(AGE)
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F1G. 2.— The calculation of an age probability distribution for
a target, HIP 107350, without a reliable moving group age. HIP
107350 has an exceptional array of secondary age indicators, which
enable a good constraint on its age. Most other stars without kine-
matic ages have much broader posterior probability distributions.

Brandt et al. (2014)

Gyro _ TOI-251
(Assume slow sequence)

0gR’x .

200 400 600 800
Age (Myr)
Gyro § TOI1-942

(Assume slow sequence)
0gR’ 4k I

NUV |
0 200 400 600 800
Age (Myr)
Figure 18. Summary of the age-activity indicators for TOI-251 and TOI-942.
The lo (darker) and 3o (lighter) age ranges from gyrochronology and

spectroscopic and photometric activity indicators are marked. We adopt a
final age estimate for TOI-251 of 40-320 Myr and for TOI-942 of 20160 Myr.

Zhou et al. (2021)




MAGNETIC FIELD MEASUREMENTS

Villebrun et al. 2019
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Fig. 1. HR diagram compiling the positions of IMTTS from this study (red and black symbols), and of IMTTS and LMTTS (blue symbols), and
HAeBes (faded symbols) from other studies. Black and gray symbols are stars in which no magnetic field has been detected. Red and blue symbols
are stars for which a magnetic field has been detected: stars represent complex magnetic topologies, circles represent simple magnetic topologies,
and squares represent undefined magnetic topologies. The sizes of the red and dark blue symbols are proportional to the maximum absolute
value of the longitudinal magnetic field measurements for each star. A light blue symbol means no such measurement is available. The youngest
magnetic HAeBe star (HD 190073) is indicated on the top-left corner as an isolated red circle. The shaded areas have the following meaning;
orange: fully convective; green: radiative core + convective envelope; blue: fully radiative; and pink: convective core + radiative envelope. The
evolutionary tracks (solid black line, ranging from 1.0-4.0 M), isochrones (solid white line) and ZAMS (lower dashed line) are from the CESAM
code, while the birthline (upper dashed line) is from Behrend & Maeder (2001). The numbers above each evolutionary track are the stellar mass
in solar units. The numbers beside each isochron is the stellar age. The thin orange line is the location where Reony.cnv./Ra = 40%.



K2-33; David et al (2016)
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Figure 1. The H-band images displayed in logarithmic stretch (the exact stretch is adjusted for each disk individually to improve the visibility of substructures). The
data were rescaled to represent the same physical size; thus, the 100 au scale bar in the first panel applies for all panels. Because the angular scales are different, a 1”
bar is shown in each panel. Immediately obvious is the extraordinary size of the IM Lup disk compared to the others, with RXJ 1615 coming in second. Areas in green
represent places where no information is available (due to either being obscured by the coronagraph or bad detector pixels). The red dot in the center marks the

position of the star. North is up and east is to the left in all frames. Timic s mido-transil (hourzs)
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