2021 Sagan Exoplanet Summer Workshop, NExSci/Caltech

Observations of young planets at different evolutionary stages

Trevor David

Flatiron Research Fellow Center for Computational Astrophysics Flatiron Institute

- 1. background
- 2. radius evolution
- 3. atmospheric evolution
- 4. orbital evolution
- 5. preliminary conclusions

background

Exoplanet demographics: the result of formation & evolution

Disentangling signatures of formation and evolution requires studying planets over a broad range of ages

Some relevant processes: -atmospheric loss -radial contraction & expansion -tidal dissipation & orbital migration -long term dynamical interactions -ejections & engulfment

A dearth of young exoplanets

50% of planets have published ages
5% of those have ages <1 Gyr
2% have ages <0.1 Gyr

why? 1. small numbers 2. stellar ages are hard

3. detection bias

Inferring exoplanet evolution

age-dating planet-hosting stars

planets in coeval stellar populations

Impact of stellar activity on transits & radial velocities

animated with **starry** (Luger+ 2019)

https://github.com/rodluger/starry

Impact of stellar activity on transits & radial velocities

radius evolution

Theoretical evolution of a close-in, low-mass planet

Core-accretion: (e.g. Pollack et al. 1996, Rafikov 2006)

Planet embedded in disk accretes to the Bondi radius, found by:

 $v_{\rm esc} = c_s$

$$R_B = \frac{GM_P}{2c_s^2}$$

...but this is not the planet's final radius

Core-accretion seems to over-predict envelope mass fractions (e.g. Lee, Chiang & Ormel 2014)

"Boil-off" (Owen & Wu 2016; see also Ikoma & Hori 2012, Ginzburg+ 2016, Misener & Schlichting 2021)

In 10⁴ - 10⁶ yrs after disk dispersal: planet's internal heat drives mass loss until it contracts to 0.1R_B, losing up to 90% of its initial envelope mass in the process

Theoretical evolution of a close-in, low-mass planet

Kelvin-Helmholtz timescale: time it takes to radiate away gravitational binding energy at current luminosity

$$t_{\rm KH} \approx \frac{GM_c M_{\rm env}}{R_p L}$$

If t_{KH} > age, planet must have cooled through some other process, e.g. bulk outflows ('boil-off')

...but we only measure M_P , R_P , age

Two degeneracies:

- 1. Different $M_c + M_{env}$ combinations can give same M_P , R_P (because we don't know ρ_{core})
- 2. Even for fixed ρ_{core} , M_{env} is degenerate with internal entropy

i.e. a planet with known mass and radius can have more mass in its core and less in its envelope if the envelope is hotter

Theoretical evolution of a close-in, low-mass planet

Solution: -find young planets which have not had much time to cool

-assume mass-loss through photoevaporation and age < mass-loss timescale

Given M_P, R_p, age: minimum envelope mass stable against photoevaporation

Lower bound on M_{env} translates to upper bound on entropy

Need 10-20% precision in mass, radius, and age to distinguish between these scenarios

Constraining exoplanet evolution with transit surveys

Kepler

-demographic studies -requires homogeneous ages for field stars

K2 & TESS

- -observations of clusters
- -trends with age
- -completeness not well characterized

Young planet searches ZEIT (e.g. Mann+ 2016) THYME (e.g. Newton+ 2019) PATHOS (Nardiello+ 2020) CDIPS (Bouma+ 2020)

Light curve evolution of a solar-mass star

Youngest transiting planets are large

Youngest transiting planets are large

Size evolution of close-in exoplanets

Case study: four newborn planets transiting V1298 Tau

Age ~ 20-30 Myr

 $R = 5.6 R_{\oplus}$ a = 0.08 au

18

a = 0.11 au

2.5 transits
<i>P</i> = 24.14 days
<i>R</i> = 10.2 R _•
<i>a</i> = 0.17 au

1 transit
<i>P</i> > 36 days
<i>R</i> = 8.8 R _•
<i>a ></i> 0.22 au

Predicting planet masses in the V1298 Tau system

David et al. 2019

sum of masses: Mc + Md ~ 2-30 M $_{\oplus}$ Md + Mb ~ 10-120 M $_{\oplus}$ individual masses: Mc=Md ~ 1-15 M _⊕ Mb ~ 8-90 M _⊕

implies contraction of ~40-90% using a mass-radius relation

V1298 Tau: a Kepler multiplanet system precursor?

 $\dot{M} = \epsilon \frac{\left(\pi R_{\rm XUV}^2\right) F_{\rm XUV}}{KGM_{\rm pl}/R_{\rm pl}}$

In the energy-limited mass-loss regime, atmospheric loss rate due to photoevaporation depends linearly on the received XUV flux...

Poppenhaeger et al. 2021

...but the early evolution in high-energy output for a given star is uncertain at the order-of-magnitude level.

Mass measurements help to constrain future evolution

If core mass of planet c is ≤5 M⊕, planet is evaporated for all plausible activity evolution curves

Planets b, c, d may be stripped, depending on activity track and core masses

Forming the radius gap

Emergence of the radius gap: theory

(1) radius gap emerges on ~Gyr timescales

(2) gap is wider at earlier times (due to larger sub-Neptunes and smaller super-Earths)
 (3) super-Earth population fills in from "bottom up," precise location of the gap shifts higher over time
 (4) relative fraction of super-Earths increases with time

Long-term evolution of planet size distribution

for Kepler stars with very similar completeness characteristics, super-Earths appear to be detected more frequently around older stars

possible explanation: some sub-Neptunes may be converted to super-Earths on gigayear timescales

Evolution of the exoplanet radius gap

Planets orbiting slow rotators

dashed lines derived from an independently age-selected sample

Large super-Earths are missing at young ages

evolution of the planet size distribution is still apparent when considering planets with radii known to 5% or better the largest cores to experience total atmospheric loss may do so on gigayear timescales

Planets missing at young ages are likely to be rocky

David et al. 2021

atmospheric evolution

Transmission spectroscopy

Flat transmission spectra and dusty outflows?

Observation:

Flat transmission spectra for young (~300-800 Myr) planets Kepler 51 b & d (Libby-Roberts+ 2020), K2-25 b (Thao+ 2020), possibly V1298 Tau b (Livingston+ in prep.)

Proposed solution:

Dust or high-altitude, aerosol hazes or may be responsible for (1) the apparent radius inflation of young planets, and (2) flat transmission spectra observed to date (Wang & Dai 2019, Gao & Zhang 2020)

How is the dust advected or created at such high altitudes? Outflows.

Testable prediction:

deeper transits at bluer wavelengths due to scattering, 2x shallower for JWST

Open questions:

What haze compositions exist? Is this a generic evolutionary stage of low-mass planets?

Flat transmission spectra and dusty outflows?

Gao & Zhang 2020:

spectral shape determined by dust/haze composition, planet mass, envelope mass

Observing atmospheric escape

Escape is demonstrated if a planet's radius exceeds its Roche lobe:

- requires high EUV flux to ionize

ground state, but low mid-UV flux

to avoid ionizing metastable state

see Oklopčić & Hirata 2018,

Oklopčić 2019

- possible from space with FUV/UV spectroscopy, X-ray

see Owen 2018 for details

Balmer lines

+ possible from ground
- requires high levels of Lyα and EUV radiation to populate n=2 state
- Hα signatures saturate at ~4%, may not be

observable after ~1 Gyr (Allan & Vidotto 2019)

Atmospheric escape in young planets

Planet	Age (Myr)	Host star Sp. type	Radius (Earth units)	Period (days)	Lyα	Ηα	He I 1083 nm	Ref.	
AU Mic b	20 - 30	M1	4.2	8.5			x	Hirano+ 2020	
V1298 Tau c	20 - 30	K0	5.6	8.3		X	x	Feinstein+ submitted, Vissapragada+ submitted	
V1298 Tau d	20 - 30	K0	6.4	12.4			\checkmark	Vissapragada+ submitted	
V1298 Tau b	20 - 30	K0	10.3	24.1		?	?	Vissapragada+ submitted, David+ in prep.	
KELT-9 b	~ 300	A0	21.2	1.5		\checkmark		Yan & Henning 2018, Cauley+2019, Borsa+ 2019, Wyttenbach+ 2020	
HD 63433 b	~ 400	G5	2.2	7.1	x			Zhang+ 2021	
HD 63433 c	~ 400	G5	2.7	20.5	\checkmark			Zhang+ 2021	
K2-100 b	~ 600 - 800	F8	3.6	1.7			x	Gaidos+ 2020	

V1298 Tau at He 1083 nm (Vissapragada+ submitted)

HD 63433 c in Lyα (Zhang+ 2021)

orbital evolution

The origins of hot Jupiters

Real and apparent Doppler shifts

0.98

0.96 0.96

0.94

0.92

-50

Real Doppler shifts are *achromatic*. Reflex motion has same amplitude regardless of the wavelength you are observing in. Apparent Doppler shifts from starspots are chromatic. Impact of spots on spectral lines is largest at wavelengths where spotphotosphere contrast is highest.

Velocity (km/s)

0

50

0.000

100

The search for hot Jupiters around young stars

Transit surveys: Jupiter-*sized* planets in multitransiting systems...but, Jovian-mass planets should be *larger* than Jupiter at ages <100 Myr, and old hot Jupiters are rarely found in multi-transiting systems. These planets may be sub-Neptune progenitors.

KELT & WASP surveys, on the other hand, have confirmed some hot Jupiters transiting young (~300-600 Myr) A-type stars.

Radial velocity surveys: three hot Jupiters in the ~600-800 Myr Praesepe & Hyades open clusters (Quinn et al. 2012, 2014).

Other hot Jupiters have been claimed around <100 Myr stars, including some that have been refuted. Disentangling stellar activity from reflex motions is a challenge. Stellar surface maps may change quickly, and should not be assumed static over weeks or longer timescales.

The search for hot Jupiters around young stars

Planet	Method	Discovery	Age (Myr)	Stellar mass (Earth)	Doppler amplitude (m/s)	Orbital period (days)	Rotation period (days)	Independent confirmation	Ref.
TW Hya b*	RV	Setiawan+ 2008	8	0.7	200	3.6	3.6	x	Huélamo+ 2008
BD+20 1790 b	RV	Hernan-Obispo+ 2010, 2015	35-80	0.6	900	7.8	2.8	x	Figueira+ 2010, Carleo+ 2018
PTFO 8-8695	Transit	Van Eyken+ 2012	3	0.4	—	0.45	0.45	x	Yu+ 2015, Bouma+ 2020
Pr0201 b	RV	Quinn+ 2012	600–800	1.2	60	4.4	—		
Pr0211 b	RV	Quinn+ 2012	600–800	1.0	300	2.1	—		
HD 285507 b	RV	Quinn+ 2014	600–800	0.7	125	6.1	12.0	\checkmark	Carleo+ 2020
CI Tau b*	RV	Johns-Krull+ 2016	2	0.9	1000	9.0	9.0	x	Donati+ 2020
KELT 9 b	Transit	Gaudi+ 2017	300	2.5	—	1.5	—	\checkmark	several
V830 Tau b	RV	Donati+ 2016	2	1.0	75	4.9	2.7	x	Damasso+ 2020
TAP 26 b	RV	Yu+ 2017	17	1.0	150	10.8	0.7		
AD Leo b	RV	Tuomi+ 2018	25-300	0.4	20	2.2	2.2	x	Carleo+ 2020
HIP 67522 b	Transit	Rizzuto+ 2020	17	1.2	_	7.0	1.4		

* disk-bearing

Solar-type stars: while some hot Jupiters are observed by ~600-800 Myr, evidence at younger ages is mixed **High-mass stars**: some hot Jupiters observed around stars as young as 300 Myr (e.g. KELT 9 b)

Origins of spin-orbit misalignments

disk torque stellar torque planet-star dynamics planet-planet dynamics Torquing of the protoplanetary disk by a distant companion or nearby star, or other gas aggregation in the birth cluster (Heller 1993, Thies et al. 2011, Batygin et al. 2011, 2020, Batygin 2012, Spalding & Batygin 2014)

Asymmetric, variable or turbulent accretion, particularly in the outer disk (Tremaine 1991, Bate et al. 2010, Fielding et al. 2015)

Magnetic star-disk interactions (Lai et al. 2011, Foucart & Lai 2011, Batygin & Adams 2013, Lai et al. 2014, Spalding & Batygin 2014, 2015)

Misalignment between the stellar spin and mean stellar wind axes (Spalding 2019)

Planet-disk interactions (Millholland et al. 2019, Su & Lai 2020)

Dynamical interactions with other planets or a companion star (Fabrycky & Tremaine 2007, Wu 2007, Storch et al. 2014)

Measuring spin-orbit angles with Rossiter-McLaughlin effect

Gaudi & Winn 2017

Measuring spin-orbit angles with Doppler tomography

Doppler tomography animations by Marshall Johnson

Case study: spin-orbit alignment of DS Tuc A b

Zhou et al. 2020

Case study: spin-orbit alignment of DS Tuc A b

Spin-orbit alignment of young planets

The origins of ultra-short period planets

The origins of ultra-short period planets

TOI-1807 b: an USP orbiting a ~100-200 Myr star

Galactic velocities of USP hosts also favor fast formation channel (Hamer & Schlaufman 2020)

- rare (~0.5-1% of GK-type stars)
- more common around lower-mass stars
- no strong metallicity preference
- occur in multiplanet systems
- have wide period ratios, large mutual inclinations
- smaller than $2R_{\oplus}$, rocky in composition
- exist interior to dust sublimation radius
- break in occurrence-period space

see: Sanchis-Ojeda+ 2014, Steffen & Coughlin 2014, Winn+ 2017, 2018, Dai+ 2018, 2019, Adams+ 2020

Observations of young planets: some early conclusions

- 1. sizes of the youngest planets are inflated; dramatic size evolution occurs in the first ~100 Myr after disk dispersal
- evolution of the planet size distribution, and the radius gap, continues beyond ~1 Gyr
- 3. atmospheric loss explains features of the close-in exoplanet population well
- 4. evidence for ongoing atmospheric escape in young planets has (largely) been inconclusive
- 5. transmission spectra of young transiting planets are, so far, featureless; dust/ hazes may explain both the flat spectra and inflated radii of young planets
- 6. spin-orbit misalignments arise early (≈200 Myr) in some cases, but the youngest planets (<100 Myr) so far appear to be fairly aligned
- 7. some rocky worlds, including at least one USP, are present by ~100 Myr
- 8. some hot Jupiters are found around ~300–800 Myr stars, while more evidence is required for younger systems (<10 Myr)