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LUVOIR ARCHITECTURES {:

LUVOIR-A

On-axis telescope
15-m aperture

TWo LUVOIR designs |
Total wavelength range: 100 nm - 2.5 um
Four instruments (discussed in next.slide.s)
Launcvh- date ~ late-2030s

Serviceable and upgradable

5-year prime mission duration, 10 years of consumables LUVOIR-B

Off-axis telescope
. .

8-m aperture
T

25-year lifetime goal for non-serviceable components



LUVOIR-A deployment

and pointing sequence

Watch LUVOIR-B video at https://www.luvoirtelescope.org/design
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THE LUVOIR INSTRUMENTS

Observational challenge

Faint olanets next to bright stars

| Extreme Coronagraph for Llving Planetary

Systems (ECLIPS).
Contrast ~ 1010

Bandpass: 0.2 pmto 2.0 um
Broad-band imaging

Imaging spectroscopy: Vis R=140, NIR R=70 & 200

Tech development via Roman Space Telescope

Coronagraph Instrument

Jupiter

Venus &
# Earth

Roman

Hybrid Lyot
Coronagraph




THE LUVOIR INSTRUMENTS

Observational challenge

Very cold to very hot gases

| LUVOTIR UV Multi-Object Spectrograph
(LUMOS) _

Bandpass: 100 nm to 1000 nm

R = 500 - 56,000

Up to 840 simultaneous spectra

FUV i |mag|ng channel
Heritage from STIS, COS, & NIRSPEC

Europa in UV

HST COS UV instrument

T



THE LUVOIR INSTRUMENTS

Observational challenge

Imaging the ultra-faint and very small at high
resolution

HighQDefi'nition Imager (HDI)

2 x 3 arcmin field-of-view

Bandpass: 0.2 umto 2.5 um

Large suite of filters & grisms
Micro-arcsec éstrometry capability
Heritage from HST WFC3 & Roman WFI

Roman WFI focal plane



CENTRE NATIONAL
eeeeeeeeeeeeeeeee

POLLUX - EUROPEAN CONTRIBUTION TO LUVOIR cnes
| | | . UV spectropolarimeter (100 - 400 nm)
~ Circular + linear polarization

High resolution point-source spectroscopy (R ~ 120,000)

Polarimetry

Star-exoplanet interactions

Fundamental physics & cosmology

ISM and CGM

Stellar magnetic fields

Active galactic nuclei

uv

Visible Solar System
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y/ PRERERRED ARCHITECTYS

H=bEX 4

4-m off-axis monolith primary mirror
Total wavelength range: 115 nm - 1.8 um

Four instruments:

e Coronagraph Instrument — similar to LUVOIR ECLIP','S | <, A
« UV Spectrograph (UVS) — similarto LUVOIRLUMOS
» HabEx Workhorse Camera (HWC) — similar to LUVOIRHDI

o Starshade Instrument — to HabEx
Launch date ~ mid-2030s
Serviceable

- S-year prime mission duration, 10 years of propellant

Also studied 8 other architectures with smaller apertures
: 11
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DESIGNING A WELL-POSED SEARCH FOR LIFE EXPERIMENT <‘>

Fmdmg Earth-like planets & ||fe would be a momentous achievement

2008 2010 2013 . AONRS

Need space- based dlrect spectroscopy to do it for exoplanets
around Sun I|ke stars

S, | EXOPLANET
ik S " . SCIENCE
¥ e d g ‘ STRATEGY '
‘ | N,xmtags;fzcrszﬂés:{ ; | | 1""“1]’ 1l d .
AAAC Exoplanet NAS Astro2010 Decadal NASA Astro Roadmap NAS Consensus Study

Task Force 14



THE HABITABLE PLANET SURVEY OBSERVATIONS
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THE HABITABLE PLANET SURVEY OBSERVATIONS

Ok

Jupiter

Venus #
“Ji.n a, Earth !

.

Hundreds of stars with LUVOIR, dozens with HabEx
Preliminary characterization for every habitable planet candidate

Detailed follow-up of promising candidates

16




WHAT WOULD N INHABITED EXOPLANET LOOK LIKE7
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THREE INHABITED PLANETS: THE EARTH THROUGH TIME
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NOT ONLY HABITABLE PLANET CANDIDATES

| Habitable
planet Rocky Super- Sub-  Neptune-  Jupiter-

candidates planets  Earths  Neptunes  sized sized
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NOT ONLY HABITABLE PLANET CANDIDATES <(F»

Habitable
planet Rocky Super- Sub-  Neptune-  Jupiter-

candidates planets  Earths  Neptunes  sized sized

Estimated yields of other types of exoplanets found in hab. planet survey

LUVOIR-A ~ 648, LUVOIR-B ~ 576
HabEx ~ 178

These planets will inevitably have a range of ages

20



COMPARATIVE EXOPLANETOLOGY

Warm to hot planets Atmospheric escape
Optical / NIR transit FUV transit spectroscopy
spectroscopy . ' s

80:l T T :l T EI T l T

NUV / optical / NIR direct
spectroscopy
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Planets + dust from planetesimal belts = complete system architecture

THE DYNAMICAL HISTORIES OF PLANETARY SYSTEMS

©

Neptune 3:2 resonance

‘: Partial gap carved by Neptune

Solar System, with planets and

interplanetary dust

22
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THE DYNAMICAL HISTORIES OF PLANETARY SYSTEMS

First high-resolution images of

warm interplanetary dust from

m high-contrast imaging

LUVOIR / HabEx dust observations will complement and extend

observations with ALMA & other ground-based facilities

U Cold interplanetary dust from ALMA

235



THE DYNAMICAL HISTORIES OF PLANETARY SYSTEMS

Planet orbits from LUVEXx

Planet masses from ground-based
or LUVOIR HDI astromeﬂ%

-y

o)

/Ju/pit@ -~ .

Zodiacal light
(not the Sun)

7
~
~ -~

\——’

® LUVOIR
resolution
~ at30pc

/

Inner 12 x 12 AU
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THE DYNAMICAL HISTORIES OF PLANETARY SYSTEMS

Planet orbits from LUVEXx

Planet masses from ground-based
or LUVOIR HDI astrometry

oL

~ at30pc

0 Zodiacal light /

High-fidelity dynamical modeling of whole exoplanetary systems

\l R

Jupit _ = LUVOIR

P @ RN resolution
s ~

/7

Inner 12 x 12 AU
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1115 1120 1‘!25 1130
Wavelength (A)
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1115 1120 1‘!25 1130
Wavelength (A)

LUVOIR / HabEx can measure H, and water in hundreds of
simultaneous protoplanetary disk FUV spectra

27
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THE POWER OF MULTI-OBJECT SPECTROSCOPY <-(F\»

LUMOS Spectrum of a Protoplanetary Disk

1115 1120 1‘!25 1130
Wavelength (A)

1 LUMOS / UVS map = 30 years of HST observations

28



OTHER LUVOIR 7/ HABEX PLANET FORMATION SCIENCE

Accreting young planets embed:ded in protoplanetary disks
Bright in optical Ha emission and in UV hydrogen continuum emission

UV.continuum better for measuring accretion rates
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ORIGINS ARCHITECTURE

5.9-m on-axis segmented primary mirror
Total wavelength range: 2.8 um - 588 pm
Telescope operating temperature =4.5K

(Webb temperature = 50 K)

baffle / barrel

Three instruments (discussed in next slide) primary mirror (5.9m)
: 0SS
Launch date ~ mid-2030s
MISC-T
Serviceable spacecraft SN

5-year prime mission duration, 10 years of propellant |-,



ORIGINS INSTRUMENTS

Origins Survey Spectrometer (OSS)
Survey mapping: 25-588 um,R ~ 300
Spectral surveys: 25 - 588 um, R ~ 43,000
Kinematics: 100 - 200 um, R ~ 325,000

Far-infrared Imager Polarimeter (FIP)

Large area survey mapping: 50 or 250 MM
PSF FWHM: 1.75" at 50 pm, 8.75" at 250 ym
Polarimetry at 50 or 250 pm -

Mid-Infrared Spectrometer Camera Transit Spectrometer (MISC-T)

Ultra-stable transit spectroscopy: 2.8 - 10.5 um, R~ 50-100
10.5-20 pm, R ~ 165 - 295




ORIGINS SENSITIVITY

Greater sensitivity than Webb at wavelengths 2 18 pm
1000x more sensitive than previous far-IR observatories

Spectral line sensitivity
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ORIGINS SCIENCE THEMES ' <)

How does the universe work? |
How do galaxies form stars, make metals and grow central supermassive black
holes? '

How did we get here?

- How do the conditions-for habitability develop during the process of planet
formation?

Are we alone?

How common are life bearing planets around M-dwarf stars?

34



ORIGINS SCIENCE THEMES

How did we get here?

- How do the conditions-for habitability develop during the process of planet
formation?

A A

)
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WATER'S ROLE IN PLANET FORMATION

"~ Protostars

Debris disks

No. of Accessible H,O Transitions

Bins of Gas Temperature, E, /k (K)

Our solar system 36




0-H,0 ground-state 0-H,0 ground-state
“179.5um"” —> “538um”
H,0 rotational spectrum

H,0 bending

ibrati
L L v ‘ )

Flux density (Jy)

T‘ (0 fundamental Sleate (0 rotational spectrum

Wavelength (um)

Terrestrial ~ (Gian Cometary volitile
planets ) reservoir




WATER'S ROLE IN PLANET FORMATION: PROTOPLANETARY DISKS

0-H,0 ground-state 0-H,0 ground-state
“179.5um"” —> “538um”
H,0 rotational spectrum

H,0 bending

ibrati
vibration HON 4G, ‘ )~
t ' Silicate

(0 fundamental

_—
>
—
>
=
(7]
=
%]
=
>
=
(.

(0 rotational spectrum

Sensitive measurements of water emission lines for ~ 1000
protoplanetary disks within 400 pc

Terrestrial aiant ; Cometary volitile
planets planets ? reservoir
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WATER'S ROLE IN PLANET FORMATION: DEBRIS DISKS

Low-density gas in debris disks | |
e e SPICA-SAFARI (R=5500)
Beta Pic model: . — Origins/0SS (R=76000)
planetesimals is poorly studied shifted to 150 pc ' Model spectrum

coming from destruction of young

Origins can survey for neutral
oxygen (63 um) and first-ionized

carbon emission (157 ym)

ALMA can access neutral carbon

and CO ‘ 10 0 50
Velocity (km/s)

89,



WATER'S ROLE IN PLANET FORMATION: DEBRIS DISKS

Low-density gas in debris disks | |
e e SPICA-SAFARI (R=5500)

Beta Pic model: = 0rigins/0SS (R=76000) ||

planetesimals is poorly studied shifted to 150 pc Iode! spectrum

coming from destruction of young

Origins can survey for neutral
oxygen (63 um) and first-ionized

carbon emission (157 ym)

Measure C/O ratios for ~ 100 debris disks and infer water content of
parent bodies

40



HOW WERE LIFE'S INGREDIENTS DELIVERED? COMETS
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HoOW WERE LIFE’S INGREDIENTS DELIVERED? COMETS D)
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HOw AND WHEN DO PLANETS FORM? DISK MASSES

Total disk masses are critical inputs for
planet formation models

- Bulk of disk mass in H, Hard to observe in
emission '

Typically inferred from dust or CO, both
minor constituents in protoplanetary disks

Factors of 10 - 100 uncertainty in masses

HD should be a more accurate proxy for H,

Bergin et al. 2013

CO J = 23-22

Flux (Jy)

Wavelength (um)



HOW AND WHEN DO PLANETS FORM? DISK MASSES

1 | I | 1 1 1 I ||

Total disk masses are critical inputsifor
planet formation models 3.8

Bulk of disk mass in H, Hard to observe in

emission =

x
Typically inferred from dust or CO, both i
minor constituents in protoplanetary disks o

w
\l
T T [T T T | T T T | T

Factors of 10 - 100 uncertainty in masses

Survey for HD emission from 500 protoplanetary disks

Expect factors of 2 - 3 uncertainty in total disk masses

\

HD J = 1-0 Bergin et al. 2013

\L CO J =23-22
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POTENTIALLY HABITABLE PLANETS AROUND M DWARFS

Mid-IR transit spectroscopy well-suited for studying potentially habitable planets
around low-mass stars

Starting Point for Origins Search for Life Program
At least 28 known temperate terrestrial planets transiting late-K to late-M dwarfs

Tier 1
Preliminary transit observations to distinguish cloudy / clear atmospheres using CO,

Tier 2

Eclipse observations of ~ 14 clearest planets around mid- to late-M dwarfs to
assess surface temperatures

Tier 3

Deep transit spectroscopy of ~ 10 most promising planets to look for
potential biosignatures

45



TIER 3 - DEEP TRANSIT SPECTROSCOPY

Relative Transit Depth (ppm)

Relative Transit Depth (ppm)

60 Transits (Per Telescope) of Earth, M8 star, Kmag=9.85, R=100
NO N0 0

t¢¢ JWSTMIRI/LRS (30 ppm noise floor)
= Modern Earth %ctrum

.« o N,0
Origins  *
(H,

) 2
Dl

$¢¢ Origins MISC-T (5 ppm noise floor)
Archean Earth Spectrum w/Aerosols
— Modern Earth Spectrum

Wavelength (um)
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