Orbital Dynamics of Hypothetical Exomoons around HD 100777b

Aayush Gautam¹, Angel Bashyal², Suman Satyal³, Shree Krishna Bhattarai⁴

- Birendra Multiple Campus, Tribhuvan University, Nepal
- Goldengate International College, Tribhuvan University, Nepal
- Department of Physics, University of Texas at Arlington, Arlington, TX 76019, USA
- Department of Physics and Optical Science, University of North Carolina at Charlotte

Motivation

- Total number of confirmed exoplanets : **4144** as of April 2, 2020. But no exomoons yet!
- > Only one candidate currently, Kepler 1625b-I (Teachey & Kipping 2018) around a Jupiter mass planet around Sun-like star.
- > Cyclotron radio emission, photometric transit timing are promising methods for their discovery, but still to

- \succ This project studied the orbital dynamics of a hypothetical exomoon of 1 Earth-mass(M_F) placed around HD 100777b (Laligurans).
- > The Jupiter mass planet orbits a Sun-like star HD 100777 (Sagarmatha).
- > The orbital integrations were performed with the suite of N-body integrators provided in **REBOUND** python

achieve required precision.

> The orbital stability of such exomoon candidates can be predicted with computational simulations.

Chaos in Orbits

- Mean Exponential Growth of Nearby Orbits (MEGNO) criterion helps us predict the dynamical stability of the exomoon.
- MEGNO determines the chaos present for the certain orbital configuration.^b
- ^b Goździewski, K. et al. 2001, A&A, 378 2

Dotted line represents the Hill's radius of planet

library.

> The specific integrator used for results below is IAS15.^a ^a Rein, H. et al. 2015, MNRAS, 446 1424–1437

- MEGNO value calculations were done over a 100x100 grid for an integration period of 10,000 years.
- > The lower MEGNO value represents greater stability.
- A MEGNO value of two implies quasi-periodicity while values near and greater than 4 imply chaos. ^c ^c Satyal, S. et al. 2013, MNRAS, 433 3

Orbital Evolution of moon

- > Points were taken within the chaotic (red) and quasiperiodic (green) regions. Direct orbital simulations were performed to generate time series plots.
- Results for stability and instability (ejection/collision) are in line with predictions by MEGNO.

Moon Orbits

Two-dimensional plots of moon orbits provide further confirmation.

Future Work

- > Exploration of Kirkwood-like gaps encroaching green region near eccentricities of 0.4.
- > Exploring the same for a satellite resembling Earth's moon.

Acknowledgements

This research was supported in part through computational resources provided by SS and the Kathmandu University Supercomputer Centre, which was established with equipment donated by CERN.

- > Time series of semi-major axis and eccentricity of moon show stable orbits within the green region for the full 10 Million years.
- > Ejections have been shown in red region within 10,000 years.
- Chaotic behavior starts from 0.021 au onwards which is near the Hill's radius of planet.

References: REBOUND documentation: <u>https://rebound.readthedocs.io/en/latest/</u> Murray and Dermott. Solar System Dynamics.CUP,2000 Rein, H. et al. 2012, A&A, 537 A128 Naming of HD 100777 system: http://www.nameexoworlds.iau.org/nepal