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OVERVIEW

e What are GPs?
e Why are they so powerful & useful?

e \What are their limitations?



PREREQUISITES

THE GAUSSIAN (NORMAL) DISTRIBUTION

g ' 34.1% 34.1%

Univariate: f(x) = e
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PREREQUISITES

BASIC BAYESIAN INFERENCE

Iikelig;o(d@ ‘ H)P(H)/' prior
PO =)
/ 1

posterior

Bayes' Theorem

evidence/marginal
likelihood

Quick introductory tutorial

Bayesian Methods for Exoplanet Science (Parviainen, 2017; arXiv:1711.03329)

More detailed references (textbooks)

Data Analysis: A Bayesian Tutorial (Sivia & Skilling, 2006)
Bayesian Logical Data Analysis for the Physical Sciences (Gregory, 2005)




EXOPLANETS

RV DISCOVERIES vs TIME

detections?

® True Earth-analogue: 9 cm/s RV
signal

® Where are all the RV <1 m/s

exoplanets.org | 6/26/
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Earth to Scale




STELLARACTIVITY

SOME SOURCES

® Signals intrinsic to stars give rise to RV variability

® Minutes, hours: oscillation, granulation

® Days to years: rotationally-modulated activity REALLY BAD

+ long-term magnetic cycles NEWS



STELLARACTIVITY

STELLAR OR PLANETARY SIGNAL...?

Radial velocity (m s77)

Kepler-78 RV curve

40
30

20

Time (JD - 2,456,400)
Figure credit Howard+13




Movie credit NASA/SDO



STELLARACTIVITY

HOW ROTATIONAL ACTIVITY — RV SIGNALS

Measured stellar RV

A A A
\ V v



STELLARACTIVITY

PROPERTIES OF ROTATIONALLY-MODULATED SIGNALS

® Time scales similar to those associated with planets (days to years)

® Quasi-periodic (periodic stellar rotation + evolving active regions + activity cycles)

® Some degree of smoothness (active regions don't change instantaneously)

® Stochastic (active regions seem to appear randomly)
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INTRODUCING GPs

WHERE NOT TO START
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Gaussian process

From Wikipedia, the free encyclopedia
In probability theory and statistics, a Gaussian process is a stochastic process (a collection of random variables indexed by time or space), such that every finite collection of those random variables has a multivariate normal distribution, i.e. every finite linear combination
of them is normally distributed. The distribution of a Gaussian process is the joint distribution of all those (infinitely many) random variables, and as such, it is a distribution over functions with a continuous domain, e.g. time or space.

A machine-learning algorithm that involves a Gaussian process uses lazy learning and a measure of the similarity between points (the kernel function) to predict the value for an unseen point from training data. The prediction is not just an estimate for that point, but also
has uncertainty information—it is a one-dimensional Gaussian distribution.['] For multi-output predictions, multivariate Gaussian processes 2] are used, for which the multivariate Gaussian distribution is the marginal distribution at each point.

For some kernel functions, matrix algebra can be used to calculate the predictions using the technique of kriging. When a parameterised kernel is used, optimisation software is typically used to fit a Gaussian process model.
The concept of Gaussian processes is named after Carl Friedrich Gauss because it is based on the notion of the Gaussian distribution (normal distribution). Gaussian processes can be seen as an infinite-dimensional generalization of multivariate normal distributions.
Gaussian processes are useful in statistical modelling, benefiting from properties inherited from the normal distribution. For example, if a random process is modelled as a Gaussian process, the distributions of various derived quantities can be obtained explicitly. Such

quantities include the average value of the process over a range of times and the error in estimating the average using sample values at a small set of times.

Contents [show]

Definition |edit
A time continuous stochastic process {X;¢ € T'} is Gaussian if and only if for every finite set of indices ¢,,. .., inthe index set T'
X-fl,.. '*tk = (th 7th)
is a multivariate Gaussian random variable.l®] That is the same as saying every linear combination of (X d190029 X tk) has a univariate normal (or Gaussian) distribution.

Using characteristic functions of random variables, the Gaussian property can be formulated as follows: {Xt;t € T} is Gaussian if and only if, for every finite set of indices 1, ..., , there are real-valued oy;, s with o;; > 0 such that the following equality holds for all
81,82,...,8 € R

k
) 1 .
E|exp| 1 Zs[ X, = exp ) Zagj.sesj + zzms[
=1 I 7
where i denotes the imaginary unit such that 42 = —1.

The numbers oy; and p, can be shown to be the covariances and means of the variables in the process.[4!

Variance |edit]
The variance of a Gaussian process is finite at any time ¢, formally!5:P- 515

var[X(t)] = E[| X (t) — E[X(t)|]])] < 00 forallt e T .

ASLIY (D) () ()] C [OL 977 | \



INTRODUCING GPs

WHERE NOT TO START

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,

C. E. Rasmussen & C. K. 1. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. (© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

ISBN 026218253X. (© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

58 Classification 3.6 Expectation Propagation 59

input: K (covariance matrix), y (£1 targets)

2:20:=0,7:=0,2:=K, u:=0 initialization and eq. (3.53)
repeat
4: fori:=1tondo
T_i =0, — compute approximate cavity para-
6: V= cri_zp,: — U4 } meters v_; and 7—; using eq. (3.56)
compute the marginal moments fi; and 52 using eq. (3.58)
8: AT:=0,"—71_i—T;and 7; == T + AT update site parameters
171' = &i ﬂi —V_; } 7‘:.5 and 17,' using eq. (359)
10 T:=%-((A7)"1+3;) 's;s] |update £ and g by eq. (3.70) and
po=3o } eq. (3.53). s; is column i of ¥
12: end for
L := cholesky(I, + S:KS 5) re-compute the approximate
14: V:=L"\S iK } posterior parameters ¥ and g
L:=K-V'Vand p:=3%v using eq. (3.53) and eq. (3.68)

16: until convergence
compute log Zgp using eq. (3.65), (3.73) and (3.74) and the existing L
18: return: &, 7 (natural site param.), log Zgp (approx. log marg. likelihood)

input: o, 7 (natural site param.), X (inputs), y (+1 targets),
k (covariance function), x, test input

2: L := cholesky (I, + S KS%) B=1I,+8:KS53
z:=S:LT\(L\(S:KD))
4 f.=kx.)" (7 —12z)
6 “\;[f*]Ll(lf(xlei:))— vTv } eq. (3.61) using eq. (3.72)

7. = ®(f./V1+V[f.]) eq. (3.63)
8: return: 7, (predictive class probability (for class 1))

} eq. (3.60) using eq. (3.71)

Algorithm 3.5: Expectation Propagation for binary classification. The targets y are
used only in line 7. In lines 13-15 the parameters of the approximate posterior are
re-computed (although they already exist); this is done because of the large number of
rank-one updates in line 10 which would eventually cause loss of numerical precision
in 3. The computational complexity is dominated by the rank-one updates in line
10, which takes O(n?) per variable, i.e. O(n®) for an entire sweep over all variables.
Similarly re-computing ¥ in lines 13-15 is O(n®).

the eigenvalues of B are bounded below by one. The parameters of the Gaussian
approximate posterior from eq. (3.53) are computed as

L =(K'+8) "' = K-KK+S5 ") 'K = K-KS:B '§3K. (3.68)

After updating the parameters of a site, we need to update the approximate
posterior eq. (3.53) taking the new site parameters into account. For the inverse
covariance matrix of the approximate posterior we have from eq. (3.53)

¥ ! = K148, andthus X} = K '48,4+ (7" —7M)ee,, (3.69)
where e; is a unit vector in direction i, and we have used that S = diag(7).
Using the matrix inversion lemma eq. (A.9), on eq. (3.69) we obtain the new ¥

'l Fnew _ 7~.pld T
poew — yod_ __T__— X 55, (3.70)
Znew ~oldyyiold 171 ? '
L+ (7P — 799 B

in time O(n?), where s; is the i’th column of £°'9. The posterior mean is then
calculated from eq. (3.53).

In the EP algorithm each site is updated in turn, and several passes over all
sites are required. Pseudocode for the EP-GPC algorithm is given in Algorithm

Algorithm 3.6: Predictions for expectation propagation. The natural site parameters
 and 7 of the posterior (which can be computed using algorithm 3.5) are input. For
multiple test inputs lines 4-7 are applied to each test input. Computational complexity
is n/6 + n? operations once (line 2 and 3) plus n? operations per test case (line
5), although the Cholesky decomposition in line 2 could be avoided by storing it in
Algorithm 3.5. Note the close similarity to Algorithm 3.2 on page 47.

3.5. There is no formal guarantee of convergence, but several authors have
reported that EP for Gaussian process models works relatively well.'®

For the predictive distribution, we get the mean from eq. (3.60) which is
evaluated using

E [fX,y,x.] = k] (K+8 1) "1S'p = k] (I - (K+ S5 ) 'K)i

~ - 3.71
=k (I-S*B 1S K)p, (3.71)
and the predictive variance from eq. (3.61) similarly by
V,[f.1X,y,x.] = k(x.,x,) — k! (K+S 1)k,

= k(x.,x,) —k/5:B152Kk,.

Pseudocode for making predictions using EP is given in Algorithm 3.6.

Finally, we need to evaluate the approximate log marginal likelihood from
eq. (3.65). There are several terms which need careful consideration, principally
due to the fact the 7; values may be arbitrarily small (and cannot safely be
inverted). We start with the fourth and first terms of eq. (3.65)

%]0g|T_l+S~'_l| - %10g|K+f]| %log|5'_1(I+§T_l)| - %log|.§'_lB|

=3 ZIOg(1+%iT:fl) - ZIOgLu, (3.73)

where T is a diagonal matrix of cavity precisions Tj; = 7_; = a:? and L is the

Cholesky factorization of B. In eq. (3.73) we have factored out the matrix S-1
from both determinants, and the terms cancel. Continuing with the part of the

161t has been conjectured (but not proven) by L. Csaté (personal communication) that EP
is guaranteed to converge if the likelihood is log concave.

Carl Edward Rasmussen and Christopher K. I. Williams

Rasmussen & Williams: very
maths-heavy, and not ideal for
beginners (but a brilliant &
definitive GP reference
nonetheless)



INTRODUCING GPs

BIVARIATE GAUSSIAN: TWO REPRESENTATIONS
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4 -
|
I
]
\
\
\
\\
2 - \
. N
& |
N Y
AN L @ s NE (
N ) < o)
D) R co® 2 OC
S 0- 0 ., B B o
< o TR
AT o ©
y S BE ol |
it - B < .
’ a 5
/
_ 4 7/
2 1
1
I
1
I
I
I
,/’_—\\\
, N
e N
—4 - 7 AN
, N
,
,
P
T — T T ——
-4 -2 0

Observed value

¥

L
%
)]

! =
\; — i
8 8
2 :
®
®
X1 X2

Random variable




INTRODUCING GPs

BIVARIATE GAUSSIAN: TWO REPRESENTATIONS

equivalent

Observed value
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X1 Random variable



INTRODUCING GPs

BIVARIATE GAUSSIAN: TWO REPRESENTATIONS

equivalent

Observed value

Random variable




INTRODUCING GPs

BIVARIATE GAUSSIAN: TWO REPRESENTATIONS

equivalent
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INTRODUCING GPs

MOVING TO THREE DIMENSIONS... k(xl., xj) =0,Vi#]j

4_

Observed value
|

Xll X12 Xl3
Random variable



INTRODUCING GPs

NOW A HUNDRED DIMENSIONS... k(xl., xj) =0,Vi#]j

4_

3_

Observed value




INTRODUCING GPS k(x;, Xj) =0, V1F)

2
...AND NOW WITH NON-TRIVIAL COVARIANCE! k( X, xj) — o~ x|

Observed value
o

I
=




INTRODUCING GPs

2
...AND IN INFINITELY MANY DIMENSIONS! k(xl., xj) — o~ x|

3_

f(x)




INTRODUCING GPs

2 |x—x|?
TWEAKING THE COVARIANCE k(xl., xj) — 100e¢ =2

300 1

200 1

100 -

f(x)
—

—100 1 \

—200 -

—300 1




INTRODUCING GPs

BROWNIAN MOTION COVARIANCE k(x;, x;)) = 100e™ 10hx =

300 -

200 -

100

f(x)

—100 -

—200 -

—300 1




a GP is the infinite-
dimensional version of
a Gaussian distribution



INTRODUCING GPs

1D Gaussian — multivariate Gaussian — Gaussian process

H H 7169
O Z k(xia X])

PDF over scalars PDF over vectors PDF over functions




INTRODUCING GPs

THE REMARKABLE PROPERTIES OF GAUSSIANS

® SO, in practice: GP prior + data — GP posterior distribution that can be evaluated
analytically

® \We can use GPs to learn unknown functions (+ error bars) directly from data!



INTRODUCING GPs

REGRESSION WITH GPs - STRAIGHTFORWARD

fy, =f(t;) +¢€;, and f~ ZPu,K)

pu=u(t; p) » deterministic, easy-to-model stuff (e.g. planets)

Klj:k(ti, L3 0) » stochastic signals/stuff we can't parametrise (e.g. stellar activity)

\

covariance hyper-parameters

Then: log £ (¢,0) x (y —ﬂ)TK‘l(y —p) + logdet K

+ simple linear algebra yields predictive GP distribution (egs. 2.22-24, Rasmussen & Williams)



INTRODUCING GPs

WHAT DOES THIS LOOK LIKE IN PRACTICE?

) S -
E %%ﬁfii % % % 5
L




INTRODUCING GPs

FUNCTION PROPERTIES VIA COVARIANCES

a. Smoothness/fuzziness — smooth spot growth/decay

b. Input scales, e.g. evolution time/length scales — spot evolution/lifetimes

c. Output scales/amplitudes, e.g. signal & noise variance — spot coverage; shot noise
d. (Quasi)-periodicities — stellar rotation

e. Stationarity/lack thereof (e.g. change points, long-term trends) — long-term cycles

f. Isotropy



INTRODUCING GPs

QUASI-PERIODIC COVARIANCE KERNEL characteristic
period

— 77 —SIn (m [ P)
k(T) X CXP W CXP 2/12
e 2

I .

evolution time scale roughness/structure

er period
wheret :=t—1t perp

N\

time between any 2 points



INTRODUCING GPs

QUASI-PERIODIC COVARIANCE KERNEL

Shorter period

Longer period

Smoother, quicker evolution Smoother, slower evolution Rougher, quicker evolution

Rougher, slower evolution

IIRIAY

A

A

\

\

!

]

ﬂ*

I

|
v

— >

® Just 3 hyper-parameters
yields an enormous
diversity of functions

® (Function amplitude
would usually be a 4th
hyper-parameter)



INTRODUCING GPs

MODELLING STELLAR ACTIVITY WITHOUT GPs

[...] fitting sine waves at the rotational
period of the star and the significant harmonics [ 7]

The global model fitted on the RVs is therefore:

subset 2008+ ju0) izl - JDBaoos + 112 - JDBAogg + Agy_gai - RHKion freq 2005
subset 2009 M) + linl - JDB>y9 +li-1”12 . JDB%O()g + ARV_Rhk * RHK[UW./‘rqug()()g

. 2n s
+Alls - szn(ﬁ) - JD B9 +Allg . COS(E) - JD B9

-—— o
: T 2r
+A12s - Mn(ﬂ/z) - JDByyp9 + Al2c - C().S(ﬁl/z) -« JD B9

23 free

subset 2010 :  lin0 + linl - JDByyio + lin2 - JDB5,, + ARy_gik - RHK o freq 2010

2 2
+A21s - Sll’l(é) - JDB>y10 + A2lc- COS(P—;) - JDB>y10

=z 2, parameters
+A23s - szn( ) . JDBQ()]() + A23c - C()S( ) . JDB?_()]()
: : f ]
+A24s sin(&jél) - IDBoo1o + A24c - cos( 1327;4) - JDByog jUSt or stellar
subset 2011 : lin0 + linl - JDBaoi + lin2 - JDB3y;y + Agy_gie - RH Kiy freq011 act iVity

o 2r 21
+A31s - sm(P—3) - JDB>y1 + A3lc- cos(—) - JDB»y

. Y4 2
+A32s - szn(1:3/2) - JDByy11 + A32c -cos(}:?)/2

YA - sin(—2—) - IDBay11 + A3 (2"
S Sin . C--COS
-— 23/3 N P3/3

) - JDB11

) - JDB>1y

® Parametrising stellar activity
sighals can be extremely difficult

® Model on left for Alpha Cen B RVs
(taken from Dumusque+12)



INTRODUCING GPs

QUASI-PERIODIC COVARIANCE KERNEL . e
characteristic

period

— 77 —SIn (m [ P)
k(T) X CXP 2—/12 CXP 2/12
e 2

N .

evolution time scale roughness/structure
per period



INTRODUCING GPs

VERY EASY TO IMPLEMENT IN PYTHON

import numpy as np

import matplotlib.pyplot as plt

import scipy.linalg as spl

from numpy.random import multivariate_normal as mvn

jitter = 1e-10 # small term added to diag(K) for more stable matrix inversion

def K _QP(t1, t2, theta):
tau = np.subtract.outer(tl,t2)
h, P, lambda_p, lambda_e = theta
K = (h**2)*np.exp(=((np.sin(np.pixtau/P)**2)/(lambda_p**2) + (tau/lambda_e)**2)/2)
np.fill_diagonal(K, K.diagonal() + jitter)
return K

plt.figure(num=None, figsize=(7, 2), dpi=120, facecolor='w', edgecolor='k"')
t_obs = np.linspace(-100,100,200)
for i in range(5):
plt.plot(t_obs,mvn(@*t_obs, K_QP(t_obs, t_obs, [1, 25, 0.5, 501)), alpha=0.5, lw =2)

2-
0 - ' / \
' -
_2-
-100 —-75 -50 —-25 0 25 50 75 100

def logL_GP(K, y_res):

factor, flag = spl.cho_factor(K)

logdet = 2*np.sum(np.log(np.diag(factor)))

gof = np.dot(y_res,spl.cho_solve((factor,flag),y_res))
return -0.5%(gof + logdet + len(y_res)*np.log(2%np.pi))

® \Writing your own GP code from scratch is easy
® And you'll learn loads

® Code on left sets up quasi-periodic covariance

kernel, draws sample functions, computes log
likelihood...

® Conditioning on data & prediction also easy

® Python: GPy, sklearn.gaussian_process,
gpytorch, gpflow ...



)  APPLICATIONS




signal

e.g. one or
more planets

/ + Wf/\” / funw

|

nuisance
signals

e.g. stellar
signals (a.k.a
correlated
noise)

\/ RS - v‘..,';:-:;.:°c.. 3 ,‘;:"’
. %,‘: .“:.." ; . ”&' ¢
oo ;'r oo )
(uncorrelated)
noise observed data
e.d. photon 11; RV;, opy il
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APPLICATIONS

(I) SEPARATING STELLAR ACTIVITY AND PLANETS

e Model stellar signals simultaneously with

planet(s) — improved planet detection,
characterisation

® Early uses of GPs in this way: CoRoT-7
(Haywood+14), Kepler-78 (Grunblatt+15)

e Works extremely well when P . & Pplanet

Activity

Planet b
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APPLICATIONS

(I) SEPARATING STELLAR ACTIVITY AND PLANETS

Spot coverage Calcium activity index

¥
® Model activity in RVs + activity \/ \f\ \/' - m j
diagnostics simultaneously Gaussian process
. o (not actuall '
Wlth a GP (RalanI+15) ObSGFVed)y act1v1ty (planet},{\{)inary)

® Improved activity constraints

-+ noise

even when P

star ™~ planet

T oo

Bisector inverse slope

SAxs

® Several planets discovered/
characterised in this way




APPLICATIONS

(I) SEPARATING STELLAR ACTIVITY AND PLANETS

® Model activity in RVs + activity
diagnostics simultaneously
with a GP (Rajpaul+15)

® Improved activity constraints

even when P, X P janeq

® Several planets discovered/
characterised in this way

A Gaussian process framework for modelling stellar

activity signals in radial velocity data @
V. Rajpaul ¥, S. Aigrain, M. A. Osborne, S. Reece, S. Roberts

Monthly Notices of the Royal Astronomical Society, Volume 452, Issue 3,21 September
2015, Pages 2269-2291, https://doi.org/10.1093/mnras/stv1428
Published: 23 July 2015 Article history v

An 11 Earth-mass, Long-period Sub-Neptune Orbiting a Sun-
like Star

Andrew W. Mayo'%3:2223 (5} \/inesh M. Rajpaul?, Lars A. Buchhave?3 (2}, Courtney D. Dressing’

Annelies Mortier*° (=), Li Zeng®”’ (1), Charles D. Fortenbach® (2}, Suzanne Aigrain®

10 5

Aldo S. Bonomo , Andrew Collier Cameron + Show full author list

Published 2019 September 27 « © 2019. The American Astronomical Society. All rights reserved.

The Astronomical Journal, Volume 158, Number 4




APPLICATIONS

(I1) STUDYING PERIODIC PHENOMENA

® | omb-Scargle periodogram: OK for single sinusoids + white noise
® \What about multiple non-sinusoidal, quasi-periodic signals + correlated noise?
® GP can provide drop-in replacement!

77 —sin’ (z7 /' P)

k(t) o< exp EYe) exp 7
e P



APPLICATIONS

(I1) STUDYING PERIODIC PHENOMENA

10
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APPLICATIONS

(I1) STUDYING PERIODIC PHENOMENA

40 | | | | | I |
[ LSSA
30 [ 1GP periodogram
wn
17
220 -
O [ J o o [ J o o o
=z Inferring probabilistic stellar rotation periods using
10 7 Gaussian processes @
Ruth Angus ™= Timothy Morton ¥, Suzanne Aigrain, Daniel Foreman-Mackey,
0) I D = : .
0 1 5 3 4 5 6 - 3 Vinesh Rajpaul
Absolute error [days] Monthly Notices of the Royal Astronomical Society, Volume 474, Issue 2, February 2018,
Pages 2094-2108, https://doi.org/10.1093/mnras/stx2109
40 I , , , I I Published: 22 September2017 Article history v
30 -
82
N
2oL
o
Z
10 |-
0
-2.5

log 1 0(error)



Normalized flux

Normalized flux

APPLICATIONS

1.0 14 %
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(11l) MODELLING SPECTRA FOR RV EXTRACTION

® Modelling stellar spectra: usually a lot of work &
astrophysical input

® GPs — very good, non-parametric spectra; almost
zero effort

® | eads to simple RV extraction

® (Can also reduce stellar activity contamination (e.g.
Kepler-37 - with Buchhave, Aigrain+, in prep.)




APPLICATIONS

Disentangling Time-series Spectra with Gaussian Processes:
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APPLICATIONS

(IV) MODELLING INSTRUMENTAL SYSTEMATICS
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APPLICATIONS

(V) APOWERFUL SIMULATION TOOL

® Train GP on real data (in all its messy glory)
® (Generate realistic synthetic data (same covariance properties; arbitrary sampling)
® Use e.g. to study observing strategies and detection limits

e Or to identify artefacts associated with fitted models and discrete sampling



APPLICATIONS

(V) APOWERFUL SIMULATION TOOL

® Notable application: showing Alpha Cen Bb was a false positive

Ghost in the time series: no planet for Alpha Cen B
D
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LIMITATIONS

() COMPUTATIONALLY EXPENSIVE

e Must compute K=! where K € RVV. scales as O(N?)

e Things get really difficult when N = 1000

e Clever techniques can often compute stuff much faster: e.g. george and
celerite by DFM et al.; see also gpflow, gpytorch

® Active research on fast technigues, e.g. using sparse approximations



LIMITATIONS

(I1) SENSIBLE COVARIANCE KERNEL ESSENTIAL

® Choosing a sensible kernel is essential

® Hyper-parameters need reasonable priors & careful interpretation.
E.g. for QP kernel, what does P even mean when 4, < P?

® Posteriors may be multimodal and degenerate - thorough sampling needed
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LIMITATIONS

(1) ENSURING YOU FIT WHAT YOU MEAN TO FIT

e Can GPs "absorb" planetary signals? Yes...if used rashly
e Need good priors + Bayesian model comparison
e Use ancillary information + RVs to constrain GP

® Conversely, can stellar activity wrongly be modelled as planets? Yes! Using a

GP can avoid such problems. (See Ahrer+ poster, forthcoming paper)
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LIMITATIONS

(IV) NOT ALWAYS THE RIGHT TOOL FOR THE JOB

If a reasonably good parametric model exists, use that instead!
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If Gaussianity is violated (e.g. due to outliers, heavy-tailed noise process),
might need to transform data...or use e.g. a Student-t process






SUMMARY

HOW TO CHARACTERISE A GP?

® oo-dimensional version of a Gaussian
e Powerful way to formulate prior distributions over functions

e Flexible Bayesian inference about functions
(learn unknown functions + error bars, given data + prior assumptions)



SUMMARY

WHY ARE GPs GREAT?

e Data-driven Bayesian inference about functions

e Extremely flexible and powerful

® Priors can (usually) be informed by physics

e Fully probabilistic: they "know what they don't know"
e Easy to implement

e Often a lot better than the (practical) alternatives



SUMMARY

WHAT ARE THEIR LIMITATIONS?

e Can be computationally expensive - usually O(N~)

® Choice of covariance function is critical; hyper-parameters can be

degenerate and/or nontrivial to interpret
® They can fit anything - if you're not careful

® They're often but not always the right tool for the job!



FURTHER READING

Gaussian process tools for modelling

. stellar signals and studying exoplanets
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