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OVERVIEW

• What are GPs? 

• Why are they so powerful & useful? 

• What are their limitations?



THE GAUSSIAN (NORMAL) DISTRIBUTION

PREREQUISITES

Univariate:  f(x) =
1

2πσ2
e− 1

2 ( x − μ
σ )2

Multivariate:  

f(x) = f(x1, …, xk) =
1

(2π)k |Σ |
e− 1

2 (x − μ)TΣ−1(x−μ)



BASIC BAYESIAN INFERENCE

PREREQUISITES
prior

P(θ |𝒟) =
P(𝒟 |θ)P(θ)

P(𝒟)

evidence/marginal 
likelihood

posterior

likelihood

Quick introductory tutorial 

Bayesian Methods for Exoplanet Science (Parviainen, 2017; arXiv:1711.03329) 

More detailed references (textbooks) 

Data Analysis: A Bayesian Tutorial (Sivia & Skilling, 2006) 
Bayesian Logical Data Analysis for the Physical Sciences (Gregory, 2005) 

Bayes' Theorem



RV DISCOVERIES VS TIME

EXOPLANETS
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• Where are all the RV < 1 m/s 
detections? 

• True Earth-analogue: 9 cm/s RV 
signal

?



STARS ARE 
ACTIVE

Image credit  NASA/SDO



SOME SOURCES

STELLAR ACTIVITY

• Signals intrinsic to stars give rise to RV variability 

• Minutes, hours: oscillation, granulation 

• Days to years: rotationally-modulated activity  

• + long-term magnetic cycles
REALLY BAD 

NEWS



STELLAR OR PLANETARY SIGNAL...?

STELLAR ACTIVITY

Kepler-78 RV curve

Figure credit  Howard+13



Movie credit  NASA/SDO



HOW ROTATIONAL ACTIVITY  RV SIGNALS→

STELLAR ACTIVITY

Measured stellar RV



PROPERTIES OF ROTATIONALLY-MODULATED SIGNALS

STELLAR ACTIVITY

• Time scales similar to those associated with planets (days to years) 

• Quasi-periodic (periodic stellar rotation + evolving active regions + activity cycles) 

• Some degree of smoothness (active regions don't change instantaneously) 

• Stochastic (active regions seem to appear randomly)



...WHAT ARE THEY? (AND WHY SHOULD YOU CARE?)

GAUSSIAN PROCESSES



WHERE NOT TO START

INTRODUCING GPs



WHERE NOT TO START

INTRODUCING GPs

Rasmussen & Williams: very 
maths-heavy, and not ideal for 

beginners (but a brilliant & 
definitive GP reference 

nonetheless)



BIVARIATE GAUSSIAN: TWO REPRESENTATIONS

INTRODUCING GPs

equivalent



BIVARIATE GAUSSIAN: TWO REPRESENTATIONS

INTRODUCING GPs

equivalent



BIVARIATE GAUSSIAN: TWO REPRESENTATIONS

INTRODUCING GPs

equivalent



BIVARIATE GAUSSIAN: TWO REPRESENTATIONS

INTRODUCING GPs

equivalent

k(x1, x2) = 0



MOVING TO THREE DIMENSIONS...

INTRODUCING GPs
k(xi, xj) = 0, ∀ i ≠ j



NOW A HUNDRED DIMENSIONS...

INTRODUCING GPs
k(xi, xj) = 0, ∀ i ≠ j



...AND NOW WITH NON-TRIVIAL COVARIANCE!

INTRODUCING GPs
k(xi, xj) = e−|xi−xj|

2

k(xi, xj) = 0, ∀ i ≠ j



...AND IN INFINITELY MANY DIMENSIONS!

INTRODUCING GPs
k(xi, xj) = e−|xi−xj|

2



TWEAKING THE COVARIANCE

INTRODUCING GPs
k(xi, xj) = 100e−2|xi−xj|

2



BROWNIAN MOTION COVARIANCE

INTRODUCING GPs
k(xi, xj) = 100e−10|xi−xj|



a GP is the infinite-
dimensional version of 
a Gaussian distribution



INTRODUCING GPs

1D Gaussian multivariate Gaussian Gaussian process

PDF over scalars PDF over vectors PDF over functions

σ
μ

Σ
μ

k(xi, xj)
μ(x)



THE REMARKABLE PROPERTIES OF GAUSSIANS

INTRODUCING GPs

• The marginalisation property allows us to compute marginals & conditionals for 
arbitrary, finite subsets of variables 

• Gaussian prior + likelihood  posterior that is also a GP (conjugacy) 

• So, in practice: GP prior + data  GP posterior distribution that can be evaluated 
analytically  

• We can use GPs to learn unknown functions (+ error bars) directly from data!

→

→



REGRESSION WITH GPs - STRAIGHTFORWARD

INTRODUCING GPs

If    and     

                    deterministic, easy-to-model stuff (e.g. planets) 

              stochastic signals/stuff we can't parametrise (e.g. stellar activity) 

Then:  

+ simple linear algebra yields predictive GP distribution (eqs. 2.22-24, Rasmussen & Williams)

yi = f(ti) + ϵi, f ∼ 𝒢𝒫(μ,K)

μ=μ(t; ϕ)

Kij=k(ti, tj; θ)

log ℒ(ϕ,θ) ∝ (y − μ)TK−1(y − μ) + log det K

covariance hyper-parameters



WHAT DOES THIS LOOK LIKE IN PRACTICE?

INTRODUCING GPs



FUNCTION PROPERTIES VIA COVARIANCES

INTRODUCING GPs

a. Smoothness/fuzziness 

b. Input scales, e.g. evolution time/length scales 

c. Output scales/amplitudes, e.g. signal & noise variance 

d. (Quasi)-periodicities 

e. Stationarity/lack thereof (e.g. change points, long-term trends) 

f. Isotropy

 spot evolution/lifetimes→

 stellar rotation→

 spot coverage; shot noise→

 long-term cycles→

 smooth spot growth/decay→



QUASI-PERIODIC COVARIANCE KERNEL

INTRODUCING GPs

, 

where 

k(τ) ∝ exp ( −τ2

2λ2
e ) exp ( −sin2 (πτ / P)

2λ2
p )

τ := t − t′ 

characteristic 
period

roughness/structure 
per period

evolution time scale

time between any 2 points



QUASI-PERIODIC COVARIANCE KERNEL

INTRODUCING GPs
S
h
o
rt
er

p
er
io
d

Smoother, quicker evolution Smoother, slower evolution Rougher, quicker evolution Rougher, slower evolution

L
o
n
g
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p
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• Just 3 hyper-parameters 
yields an enormous 
diversity of functions 

• (Function amplitude 
would usually be a 4th 
hyper-parameter)



MODELLING STELLAR ACTIVITY WITHOUT GPs

23 free 
parameters 

just for stellar 
activity

• Parametrising stellar activity 
signals can be extremely difficult 

• Model on left for Alpha Cen B RVs 
(taken from Dumusque+12)

INTRODUCING GPs



QUASI-PERIODIC COVARIANCE KERNEL

INTRODUCING GPs

, k(τ) ∝ exp ( −τ2

2λ2
e ) exp ( −sin2 (πτ / P)

2λ2
p )

characteristic 
period

roughness/structure 
per period

evolution time scale



INTRODUCING GPs
VERY EASY TO IMPLEMENT IN PYTHON

• Writing your own GP code from scratch is easy 

• And you'll learn loads 

• Code on left sets up quasi-periodic covariance 
kernel, draws sample functions, computes log 
likelihood... 

• Conditioning on data & prediction also easy 

• Python: GPy, sklearn.gaussian_process, 
gpytorch, gpflow ...



APPLICATIONS



signal              

e.g. one or 
more planets

nuisance 
signals

e.g. stellar 
signals (a.k.a  

correlated 
noise)

+

noise              

e.g. photon 
noise

(uncorrelated)

+

observed data              

{ti, RVi, σRV,i}N
i=1

=



(I)   SEPARATING STELLAR ACTIVITY AND PLANETS

APPLICATIONS

• Model stellar signals simultaneously with 
planet(s)  improved planet detection, 
characterisation 

• Early uses of GPs in this way: CoRoT-7 
(Haywood+14), Kepler-78 (Grunblatt+15) 

• Works extremely well when 

→

Pstar ≉ Pplanet

Figure credit  Haywood+14



(I)   SEPARATING STELLAR ACTIVITY AND PLANETS

APPLICATIONS

• Model activity in RVs + activity 
diagnostics simultaneously 
with a GP (Rajpaul+15) 

• Improved activity constraints 
even when  

• Several planets discovered/
characterised in this way

Pstar ≈ Pplanet



(I)   SEPARATING STELLAR ACTIVITY AND PLANETS

APPLICATIONS

• Model activity in RVs + activity 
diagnostics simultaneously 
with a GP (Rajpaul+15) 

• Improved activity constraints 
even when  

• Several planets discovered/
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(II)   STUDYING PERIODIC PHENOMENA

APPLICATIONS

• Lomb-Scargle periodogram: OK for single sinusoids + white noise 

• What about multiple non-sinusoidal, quasi-periodic signals + correlated noise? 

• GP can provide drop-in replacement!

k(τ) ∝ exp ( −τ2

2λ2
e ) exp ( −sin2 (πτ / P)

2λ2
p )
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• Modelling stellar spectra: usually a lot of work & 
astrophysical input 

• GPs  very good, non-parametric spectra; almost 
zero effort 

• Leads to simple RV extraction 

• Can also reduce stellar activity contamination (e.g. 
Kepler-37 - with Buchhave, Aigrain+, in prep.) 

→

APPLICATIONS
(III)   MODELLING SPECTRA FOR RV EXTRACTION 
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(IV)   MODELLING INSTRUMENTAL SYSTEMATICS

APPLICATIONS

• Instruments are not always 
well-behaved! 

• Case-in-point: Kepler's K2 
mission 

• Right: K2SC's GP modelling 
of instrumental, 
astrophysical variability

Figure credit  Aigrain+16



(V)   A POWERFUL SIMULATION TOOL

APPLICATIONS

• Train GP on real data (in all its messy glory) 

• Generate realistic synthetic data (same covariance properties; arbitrary sampling) 

• Use e.g. to study observing strategies and detection limits 

• Or to identify artefacts associated with fitted models and discrete sampling



(V)   A POWERFUL SIMULATION TOOL

APPLICATIONS

• Notable application: showing Alpha Cen Bb was a false positive



DANGER
GAUSSIAN PROCESSES

limitations of



(I)   COMPUTATIONALLY EXPENSIVE

LIMITATIONS

• Must compute  where : scales as  

• Things get really difficult when   

• Clever techniques can often compute stuff much faster: e.g. george and 
celerite by DFM et al.; see also gpflow, gpytorch 

• Active research on fast techniques, e.g. using sparse approximations 

K−1 K ∈ ℝN×N 𝒪(N3)

N ≳ 1000



(II)   SENSIBLE COVARIANCE KERNEL ESSENTIAL

LIMITATIONS

• Choosing a sensible kernel is essential 

• Hyper-parameters need reasonable priors & careful interpretation.  
E.g. for QP kernel, what does  even mean when ?  

• Posteriors may be multimodal and degenerate - thorough sampling needed

P λe < P

25 d period, low complexity 100 d period, higher complexity



GP



(III)   ENSURING YOU FIT WHAT YOU MEAN TO FIT

LIMITATIONS

• Can GPs "absorb" planetary signals? Yes...if used rashly 

• Need good priors + Bayesian model comparison 

• Use ancillary information + RVs to constrain GP 

• Conversely, can stellar activity wrongly be modelled as planets? Yes! Using a 
GP can avoid such problems. (See Ahrer+ poster, forthcoming paper)



right tool 
for the job?

bad workman 
blaming his 

tools?



• If a reasonably good parametric model exists, use that instead! 
 
 
 
 
 
 

• If Gaussianity is violated (e.g. due to outliers, heavy-tailed noise process), 
might need to transform data...or use e.g. a Student-t process 

(IV)   NOT ALWAYS THE RIGHT TOOL FOR THE JOB

LIMITATIONS



SUMMARY



HOW TO CHARACTERISE A GP?

SUMMARY

• ∞-dimensional version of a Gaussian 

• Powerful way to formulate prior distributions over functions 

• Flexible Bayesian inference about functions  
(learn unknown functions + error bars, given data + prior assumptions)



WHY ARE GPs GREAT?

SUMMARY

• Data-driven Bayesian inference about functions 

• Extremely flexible and powerful  

• Priors can (usually) be informed by physics 

• Fully probabilistic: they "know what they don't know"  

• Easy to implement 

• Often a lot better than the (practical) alternatives



WHAT ARE THEIR LIMITATIONS?

SUMMARY

• Can be computationally expensive - usually  

• Choice of covariance function is critical; hyper-parameters can be 

degenerate and/or nontrivial to interpret 

• They can fit anything - if you're not careful 

• They're often but not always the right tool for the job! 

𝒪(N3)



FURTHER READING



The end


