Terrestrial planet formation at home and abroad

Sean Raymond Laboratoire d'Astrophysique de Bordeaux planetplanet.net

The Solar System

The exo-Solar System

Measure:

- mass (M_{Jup} sin i)
- orbital size
- orbital shape (eccentricity)

(Sun's radial velocity amplitude due to Jupiter ~12 m/s, P=12 yr)

Exoplanet demographics

Planet formation

Slide courtesy M. Lambrechts

Pebble accretion

Johansen & Lacerda 2010; Ormel & Klahr 2010; Lambrechts & Johansen 2012, 2014; Morbidelli & Nesvorny 2012, ...

PlaRetæimbryos

"snow line"

~Maoskyass (10% M_{Earth})

50% rock, 50% ice 5-10 M_{Earth}

gas disk

Pebble accretion is more efficient past the snowline (Lambrechts et al 2014; Morbidelli et al 2015; Ormel et al 2017)

Super-Earths and the Solar System

Occurrence rate: ~30-50%

(Mayor et al 2011; Howard et al 2012; Fressin et al 2013, Mulders et al 2018)

All roads lead to migration...

Growth timescales are very short

Bolmont et al 2014

Migration cannot be ignored

See Inamdar & Schlichting 2015, Schlichting 2014; Ogihara et al 2015; Grishin & Perets 2015

Orbital migration

Matters for Mp >~ MEarth

More massive planet => faster migration

Migrating planets are trapped at the inner edge of the disk

Masset et al (2006); Romanova & Lovelace (2006)

Places and and a second second

~Mars-mass (10% M_{Earth}) Gaseous disk dissipates after a few million years

The period ratio distribution

The period ratio distribution

Izidoro et al (2017, 2019)

TRAPPIST-1 System

Illustration

(Gillon et al 2017, Luger et al 2017)

Jupiter blocks the migration of The young Jupiter accretes gas more distant, icy embryos from the disk

Prediction: systems with wide-orbit Jupiters should anti-correlate with super-Earths

Izidoro et al (2015)

Do Jupiters correlate with super-Earths?

- Barbato et al (2018): RV Deficit of super-Earths in systems with wide-orbit Jupiters
- Bryan et al (2019): RV Excess of Jupiterlike trends in systems with super-Earths
- Zhu & Wu (2018): RV/Transit Excess of Jupiters in super-Earth systems

Nater

Number, masses

Orbits

Growth timescales, compositions, isotopic ratios 5x10-4 MEarth

Total mass S/C dichotomy Orbital distribution

3 possible solutions to the small Mars problem

"Low-mass asteroid belt"

The "Grand Tack"

Early instability

I. Low-mass asteroid belt

Assumption: few (if any) planetesimals formed in Mars region/asteroid belt

(Hansen 2009; Izidoro et al 2015; Walsh & Levison 2016; Drazkowska et al 2016; Raymond & Izidoro 2017b)

I. Low-mass asteroid belt

Dust, gas distributions were smooth(ish)

HL Tau's disk (ALMA Partnership et al 2015)

I. Low-mass asteroid belt

Assumption: few (if any) planetesimals formed in Mars region/asteroid belt

(Hansen 2009; Izidoro et al 2015; Walsh & Levison 2016; Drazkowska et al 2016; Raymond & Izidoro 2017b)

C-types and Earth's water scattered in from giant planet region

Some asteroids (Vesta? Irons? S-types?) scattered out from terrestrial planet region

Raymond & Izidoro (2017a,b)

Water on Earth

- $M_{water} \sim 0.1\% M_{Earth}$
- Isotopic match to carbonaceous chondrites (from C-type asteroids; e.g., Marty 2012; Alexander et al 2012)

Classical model: primitive C-types delivered Earth's water (Morbidelli et al 2000; Raymond et al 2004, 2007)

New story: water was delivered to Earth by same population that was implanted into asteroid belt as C-types

(Walsh et al 2011; O'Brien et al 2014; Raymond & Izidoro 2017)

2. The Grand Tack (Walsh et al 2011)

Pierens & Raymond (2011)

Jupiter in the gaseous disk

Jupiter and Saturn in the gaseous disk

The Grand Tack model

Walsh et al (2011); Jacobson & Morbidelli (2014)

3. The Solar System's instability (the "Nice model")

 NEW:Timing is uncertain — anytime before ~100 Myr

(Zellner 2017; Morbidelli et al 2018; Nesvorny et al 2018; Mojzsis et al 2019; Hartmann 2019)

Tsiganis et al 2005; Morbidelli et al 2007; Levison et al 2011; Nesvorny & Morbidelli 2012; Batygin & Brown 2012

Clement et al (2019)

3 possible solutions to the small Mars problem

Is a narrow annulus of planetesimals realistic?

Does outward migration work with gas accetion?

When did the instability really happen?

"Low-mass asteroid belt"

The "Grand Tack"

Early instability

Giant exoplanets

e=0.6

e=0

Planet-planet scattering

Simulation Time: 00.0 years

Credit: Eric Ford

Raymond et al 2012

More information

 Solar System formation in the context of extra-solar planets Raymond, Izidoro, & Morbidelli 2018 (Chapter to appear in Planetary Astrobiology; arxiv:1812.01033)

- The MOJO videos (YouTube)
- * <u>planetplanet.net</u>

HD 96167 b

Earth

MOJO - Part 0/11 - Introduction Sean Raymond & Alessandro Morbidelli (2018)

Venus

Mercury

Extra Slides

Core accretion

JUPITER

SATURN

Large cores block pebble flux

"Pebble isolation" mass: ~20 ME for typical disk at Jup's orbit

Lambrechts et al (2014); Bitsch et al (2018)

Jupiter's core blocks the inward flux of pebbles, starving the growing terrestrial planets

Mars-mass
(10% MEarth)
One large embryo
blocks pebble flux

Morbidelli et al (2015); Lambrechts et al (2019)

Lambrechts, Morbidelli, Jacobson et al (2019)

Meteoritic evidence for early growth of Jupiter's core

Also match multiplicity distribution (the "Kepler dichotomy")

Izidoro et al (2017)