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The Future:

• Planet-finding techniques have improved dramatically in the last 
two decades: we are directly imaging exoplanets and measuring 
their atmospheres, and finding smaller and smaller planets.	

• Only a matter of time                                                                 
(and money) until we                                                                       
find a large number                                                                         
of habitable worlds,  
and perhaps, signs of  
life.
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Either way, we will still need the planet masses for 
characterization!



The Doppler Method
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!
The great radial velocity 

market crash of 2010



The Future Promise of RVs
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The end of Latham’s law?



Causes of the RV recession
• Kepler - Redirection of resources and personnel 

• Instrumentation - 1 m/s single measurement precision from 
HARPS, 2-3 m/s from iodine technique 

• Telescope time - 10x improvement in precision requires 100x 
increase in telescope time (or reduction in target lists); multi-planet 
system number of discovery epochs increases non-linearly (30: 1 
planet;100+: 2 planets; 500+: 3+ planets) 

• Pipeline analysis - CPS code is 20 years old, designed for 
computation-limited environment.  HARPS code is basic CCF with 
line-masking 

• Stellar Activity - Targeting quietest stars running its course
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EarthFinder

Credit: Ball Aerospace
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EarthFinder

Credit: Ball Aerospace
Radial Velocities … in space!
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exoplanets orbiting nearest Sun-like stars
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Discovery, mass and orbit characterization of Earth-mass 
exoplanets orbiting nearest Sun-like stars

10% mass precision: 
~ 1 cm/sNEID, EXPRES, ESPRESSO

EarthFinder

10.1

Important not only to achieve this sensitivity, 
but to sustain it on multi-year time-scales.



Study Focus
We are not building the mission;  

We are not proposing to build the mission;  

We are tasked with:  

Evaluate the scientific rationale for going to space vs. 
staying on the ground: 

• What do you gain from space?  

• What can’t you do from the ground? 
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Can we “solve” stellar activity?

Will the Earth’s atmosphere limit 
RV precision on the ground?



Study Teams

Instrument & Mission Gautam Vasisht  

Tellurics Sharon Wang 

Stellar Activity Heather Cegla, Xavier Dumusque

Ancillary Science Courtney Dressing, Peter Gao
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Spacecraft & Orbit

• Ball Aerospace 
• Kepler, Spitzer heritage 

• Extended baffle 
• Thermal shield 

• 1.45 meter primary 
• 5 year primary mission 
• 25-50 nearest FGKM main sequence stars 
• Earth-trailing or L2 orbit 
• 70.7% of sky visible at any time 

• Minimum two three-month visibility windows every year 
• 29% of sky in continuous viewing zone

Anti-Sun 
Thermal  
shield

45o baffle

Solar Panels

Thermal  
Isolation 
Gap

Instrument Bay

Spacecraft  
Bus
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Figure from Bahaa Hamze

 

Constant Viewing Zone 

Anti-Sun 
Avoidance 

Zone: ~14.6% 

Sun Line 

Sun 
Avoidance 

Zone: ~14.6% 

Operational Pointing 
Zone: ~70.7% 

45º 
EarthFinder 

135º 

EarthFinder 

• Ball Aerospace 
• Kepler, Spitzer heritage 

• Extended baffle 
• Thermal shield 

• 1.45 meter primary 
• 5 year primary mission 
• 25-50 nearest FGKM main sequence stars 
• Earth-trailing or L2 orbit 
• 70.7% of sky visible at any time 

• Minimum two three-month visibility windows every year 
• 29% of sky in continuous viewing zone

Anti-Sun 
Thermal  
shield

45o baffle

Solar Panels

Thermal  
Isolation 
Gap

Instrument Bay

Spacecraft  
Bus



Instrument



Instrument

Spectrograph:  
• High-resolution (R~150-200k) 
• Diffraction-limited (Single mode fiber spatial 

illumination stability) 
• Laser frequency micro-comb wavelength 

calibration 
• Visible arm: 380-900 nm 
• NIR arm: 900-2400 nm 
• Small UV arm for 280 nm MgI chromospheric 

activity indicator
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Why space?

Figure from Sam Halverson
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What can’t be done from the ground?
The Earth’s atmosphere may introduce RV errors of 
~10 cm/s in the visible, & ~1 m/s in the NIR



The telluric challenge
Δv



47

Cunha et al. 2014
Impact for HARPS data from ignoring micro-telluric



Sameshima et al. 2018:

”We also develop a new diagnostic method for evaluating the 
accuracy of telluric correction and use it to demonstrate that our 
method achieves an accuracy better than 2% for spectral parts for 
which the atmospheric transmittance is as low as ∼20% if telluric 
standard stars are observed under the following conditions: (1) the 
difference in airmass between the target and the standard is 
<0.05; and (2) that in time is less than 1 h. In particular, the time 
variability of water vapor has a large impact on the accuracy of 
telluric correction and minimizing the difference in time from that of 
the telluric standard star is important especially in near-infrared high-
resolution spectroscopic observation.”

Divide by telluric model or standard?
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Figure from Cullen Blake



Stellar Activity
Approaches under exploration for activity 
mitigation: 

Wavelength Coverage (e.g. CARMENES) 

Cadence (e.g. MINERVA) 

R~200k resolution (e.g. ESPRESSO) 

Line-by-line analysis 

Simultaneous photometry (e.g. Oshagh et 
al. 2017, RVxK2)

50



Wavelength Dependence
To first order, RV~1/λ was expected for cool starspots 
(eg Reiners et al. 2010),and observed for T Tauri stars, 
Barnard's star with HARPS, and now CARMENES: 

model of active M stars 
with corotating spots 

Reiners et al., 2010 

vsini = 2, 5, 10, and 30 km/s 

amplitude 

Zechmeister et al., subm. 

RVs in the near-infrared 

Reiners et al (in prep)
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Reiners et al (in prep)
Stellar activity is not a 
simple function of λ, and 
also time-dependent
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Slide from  
Ignas Ribas group

Wavelength Dependence
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Wavelength Dependence
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• RV color subtracts planet signal(s) completely! 
• Clean measure of RVs due to chromatic activity!  
• Needs modeling to go from RV color —> RV from activity 
• To zeroth order, activity RV α RV color, so: 

•  Isolated planet signal is ~RV - Cx(RV color)



Wavelength Dependence
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The cadence advantage of space
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“We have clearly demonstrated that high 
cadence observations on the timescale 
of the stellar rotation period are essential 
for reliable RV detection of planets 
orbiting active stars.”



The cadence advantage of space
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Figure from Bahaa Hamze
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Figure from Bahaa Hamze
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Due to loss of observing time on the ground due to daytime 
and weather, a 1.5-m telescope in space has the photon 
gathering power of a ~3.5-m telescope on the ground.



The cadence advantage of space
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– Median target with 2 terrestrial planets from a 5 yr, 42 target 
“super-NEID” vs. EarthFinder survey of direct imaging targets.

Uniform random cadence 
for target in CVZ; 
See also Hall et al. (2018)

Realistic survey 
simulation accounting 
for weather and 
daytime, target list, 
stellar host RV 
information content
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– Median target with 2 terrestrial planets from a 5 yr, 42 target 
“super-NEID” vs. EarthFinder survey of direct imaging targets.

1014 times 
lower p-value!

108 times 
lower p-value!

Not significant
1 day 
cadence 
aliasing
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EarthFinder Summary
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▪ EarthFinder is a space-based 1.45-m observatory Probe mission concept  
▪ Extremely precise and stabilized high-resolution UV-VIS-NIR spectrograph 
▪ Developing scientific rationale for measuring stellar velocities of the nearest 

FGKM dwarf stars from space 
▪ Absence of the Earth’s atmosphere improves the obtainable radial velocity 

precision 
▪ Unique combination of space advantages aid in mitigating stellar activity: 

▪ Uninterrupted wavelength coverage 
▪ Uninterrupted cadence 
▪ Diffraction-limited  
▪ Extreme spectral resolution 

▪ Ancillary science cases: 
▪ Asteroseismology 
▪ Water in the local Universe 
▪ Acceleration of the Universe 
▪ UV space capability spanning Hubble - HabEx/LUVOIR. temporal 

gap 
▪ And more!
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Thank you
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2014



MINERVA	-	Photons
172 targets



MINERVA	-	Time
HARPS RVs of CoRoT 7



MINERVA	-	Time
Gaussian Processes - Figure from João P. Faria 
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Instrument
High-resolution (R~200k) UV-Optical-NIR diffraction-

limited stablized spectrograph

1-1.4 m

Figure from Gautam Vasisht


