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• Often, we do not know enough about the physical 
processes responsible for activity-driven RV 
variations, so we cannot model them.

• But if we do not account for activity: our mass 
determinations can be biased, i.e inaccurate.

• Solution: we account for the uncertainty induced by 
stellar activity by treating activity as noise.

• Stars are rotating and their surfaces are constantly 
evolving: we must treat their activity as 
correlated noise.
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Accuracy and precision of a parameter estimate
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ra
di

us
“True” value

Precise, 
but inaccurate

Accurate
(but comparatively 

less precise)

Our goal: get a result 
that is both accurate 

and precise

Refer back to Tom Loredo’s talk yesterday
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Signal and noise

Any value obtained by an observation (eg. RVs) contains two 
components:

1. Signal: carries the information of interest (eg. the planet’s 
reflex motion)

2. Noise: unknown processes that we do not understand (eg. 
stellar activity). Can either be random (uncorrelated), or 
non-random (correlated).

→ We account for signals in our model 
(eg. a keplerian)

→ We account for noise in our goodness 
of fit (the chi square or the likelihood)

Refer back to Tom Loredo’s talk yesterday
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Chi square (χ²) and likelihood (𝓛)

(data-model)²

errorbars²
χ² =

No noise:

Uncorrelated noise 
(Gaussian-distributed, “white” noise, “jitter”):

(data-model)²

√(errorbars² + jitterterm²)
χ² =

Refer back to Tom Loredo’s talk yesterday

𝓛  = exp(-χ² /2)

Correlated noise (non-random, “red” noise):

𝓛  ≠ exp(-χ² /2)
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Uncorrelated noise (“white” noise, “jitter”)

All data points are completely independent of each other

covariance ≈ 0

covariance ≈ 0There is significant covariance 
only in the diagonal elements: 
they are the variance of each 

observation, i.e. their error bar!

See Rassmussen & Williams (2006), Haywood (2015, Chap. 2) and others
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Quasi-periodic form:

Covariance function k(t, t’)Covariance matrix Ki,j = k(ti, tj) = k(t,t’)

See Rassmussen & Williams (2006), Haywood (2015, Chap. 2) and others
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Why is this form of covariance function adequate to represent stellar activity?

Active-region lifetimes 
of FGKM stars: 

see Giles, Collier 
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(2017)
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How can we constrain η4 ? Jeffers & Keller (2009)

A lightcurve, or an RV curve, will only ever show 2-3 peaks per stellar rotation.
This is equivalent to η4 ≈ 0.5.

One rotation period

Reconstructed lightcurve Reconstructed surface mapSynthetic stellar surface

Longitude
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López-Morales et al. (2016) and others



Determining the hyperparameters

“smoothing” 
factor

recurrence 
timescale

decay 
timescale Prot

amplitude



Determining the hyperparameters

• Can “train” the GP on an auxiliary dataset, eg. the lightcurve 
(Haywood et al. 2014, see also Grunblatt et al. 2015, Cloutier et al. 
2017 and others), the spectroscopic indicators like FWHM, BIS 
(Rajpaul et al. 2015, Jones et al. 2017 and others), in some cases even 
the RVs themselves (Faria et al. 2016, Barros et al. 2017)

“smoothing” 
factor

recurrence 
timescale

decay 
timescale Prot

amplitude



Determining the hyperparameters

• Can “train” the GP on an auxiliary dataset, eg. the lightcurve 
(Haywood et al. 2014, see also Grunblatt et al. 2015, Cloutier et al. 
2017 and others), the spectroscopic indicators like FWHM, BIS 
(Rajpaul et al. 2015, Jones et al. 2017 and others), in some cases even 
the RVs themselves (Faria et al. 2016, Barros et al. 2017)

• Can “fix” the hyperparameter values using Gaussian priors, based on 
prior knowledge/analysis (López-Morales et al. 2016, Dittmann et al. 
2017, Haywood et al. 2018 and others)
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It shouldn’t.

Haywood et al. (2014), see also Faria et al. (2016)

da
ta

ke
pl

er
ia

n
da

ta
+

fit
re

si
du

al
s

G
P

Time

Uncorrelated noise 
+ injected Keplerian

Occam’s razor: 

The flexibility of the 
GP is balanced by a 
penalty term in the 
likelihood function. The 
Keplerian is a simple 
model (less flexible but 
perfectly adequate for 
a keplerian signal) so it 
is favoured by the 
likelihood function.
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Papers & textbooks: 

• The classic textbook reference (in which you will find all the equations and statistical jargon): C. E. Rasmussen & C. K. 
I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006, (online: www.GaussianProcess.org/gpml).

• A very clear introduction to GPs (not specific to exoplanets):  Roberts et al. (2012)

• GPs to account for stellar activity in RV analyses: Baluev (2013), Haywood et al. (2014), Grunblatt et al. (2015), Rajpaul 
et al. (2015), Faria et al. (2016), Anglada-Escudé et al. (2016), López-Morales, Haywood et al. (2016), Barros et al. 
(2017), Jones et al. (2017), Cloutier et al. (2017), Haywood et al. (2018) and others.

• GPs applied to transmission spectroscopy for the study of planetary atmospheres: Gibson et al. (2011) and Czekala et 
al. (2014) and others.

• Machine learning to detrend Kepler and K2 lightcurves: Foreman-Mackey et al. (2015), Crossfield et al. (2015), 
Foreman-Mackey et al. (2014),  Ambikasaran et al. (2014),  Aigrain et al. (2015) and Barclay et al. (2015),  Armstrong et 
al. (2016) and others.

Develop your GP intuition: 

• This is a fantastic lecture on the nature of Gaussian processes by David MacKay. I thoroughly recommend watching it! 
http://videolectures.net/gpip06_mackay_gpb/

• Suzanne Aigrain and her group have given many talks and tutorials, all available here: http://splox.net/tag/gps/

• Read Chapter 2 of my PhD thesis (Haywood 2015): https://research-repository.st-andrews.ac.uk/handle/10023/7798?
mode=full&submit_simple=Show+full+item+record

• Discussion on “astrophysically-motivated” GPs: Haywood et al. (2018), López-Morales et al. (2016)

Useful codes: 

• Dan Foreman-Mackey’s George, celerite (and emcee) codes are publicly available at: http://dan.iel.fm/research/.

• João Faria’s kima, for exoplanet detection in RVs with DNest4 and GPs: https://github.com/j-faria/kima

• Radvel, a radial velocity modelling toolkit co-written by BJ Fulton, Erik Petigura, Sarah Blunt and Evan Sinukoff: https://
radvel.readthedocs.io/en/latest/

The use of GPs in exoplanet science is growing fast; this is only a small selection of papers/codes/etc. and is in no way exhaustive.

http://www.GaussianProcess.org/gpml
http://videolectures.net/gpip06
http://splox.net/tag/gps/
http://dan.iel.fm/research/
https://github.com/j-faria/kima

