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Theme 1: The Scale of the Einstein Ring

Microlensing is most sensitive to planets near the Einstein ring. Thus, the size of the Einstein
ring is fundamental to understanding the type of planets microlensing can find. The key
concept is that the size of the Einstein ring scales as the square root of the mass of the host
star. The most relevant formulation of the Einstein ring is its size in the lens plane because
this corresponds to the typical projected separation of a planet detected by microlensing:

rE =

√
κM`

D`(D` −Ds)

Ds

,where κ = 8.14 mas/M�, (1)

for a host star mass M` in solar masses and distance D` in kpc and a source at Ds = 8 kpc.
For most practical purposes, the source can always be assumed to be at approximately 8
kpc. Below is a table showing how the size of the Einstein ring (in AU) scales with the mass
and distance of the lens.

Other ways to think about the Einstein ring are in terms of its angular size, θE, or its physical
projection onto the observer plane, r̃E. Typical order-of-magnitude values are 1 mas and 10
AU, respectively. Tables for varying lens (host) masses and distances are given below. The
angular size of the Einstein ring is relevant for estimating the separations between the two
images and other angular scales on the sky. The projection of the Einstein ring on the
observer plane is used for understanding the relative scale of parallax signals, which are
induced by the observer.

Useful References on the Scale of Astrometric Microlensing:

• Dominik & Sahu (1998) — Outlines the theory of astrometric microlensing. Figures
1 and 2 Show the scale of the signal relative to the size of the Einstein ring. [http:
//adsabs.harvard.edu/abs/1998astro.ph..5360D]

• Han & Jeong (1999) — The effect of a luminous lens on the astrometric microlensing
signal. Figure 1 shows that the astrometric signal decreases as light from non-source
stars increases. [http://adsabs.harvard.edu/abs/1999MNRAS.309..404H]

• Lu et al. (2016) — Results from a multi-year program using NIRC2 on Keck to measure
the centroid shifts of long-timescale microlensing events potentially arising from stellar
remnant lenses. [http://adsabs.harvard.edu/abs/2016ApJ...830...41L]

– Fig. 1 [L]: Magnification and centroid shift as a function of tau

– Fig. 1 [R]: Centroid shift as a function of u (for various M`); but no (x,y) compo-
nent analysis

– S. 2: Overview of the derivation (with refs!) of the centroid shift as f(t0, tE, u0)
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Table 1. Physical Einstein radius rE [AU] for a grid of (D`, M`)
a

Lens Type M` [M�] D` [kpc]

1.0 2.0 3.0 4.0 5.0 6.0 7.0
Black hole 10 8.44 11.05 12.35 12.76 12.35 11.05 8.44
G Dwarf 1 2.67 3.49 3.91 4.03 3.91 3.49 2.67
M Dwarf 0.3 1.46 1.91 2.14 2.21 2.14 1.91 1.46
M Dwarf 0.1 0.84 1.10 1.23 1.28 1.23 1.10 0.84
Brown Dwarf 0.01 0.27 0.35 0.39 0.40 0.39 0.35 0.27
Jupiter 0.001 0.08 0.11 0.12 0.13 0.12 0.11 0.08

aAssuming a source star distance of Ds = 8 kpc.

Table 2. Angular Einstein radius θE [mas] for a grid of (D`, M`)
a

Lens Type M` [M�] D` [kpc]

1.0 2.0 3.0 4.0 5.0 6.0 7.0
Black hole 10 8.44 5.52 4.12 3.19 2.47 1.84 1.21
G Dwarf 1 2.67 1.75 1.30 1.01 0.78 0.58 0.38
M Dwarf 0.3 1.46 0.96 0.71 0.55 0.43 0.32 0.21
M Dwarf 0.1 0.84 0.55 0.41 0.32 0.25 0.18 0.12
Brown Dwarf 0.01 0.27 0.17 0.13 0.10 0.08 0.06 0.04
Jupiter 0.001 0.08 0.06 0.04 0.03 0.02 0.02 0.01

aAssuming a source star distance of Ds = 8 kpc.
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Table 3. Projected physical Einstein radius r̃E [AU] for a grid of (D`, M`)
a

Lens Type M` [M�] D` [kpc]

1.0 2.0 3.0 4.0 5.0 6.0 7.0
Black hole 10 9.64 14.73 19.76 25.51 32.93 44.18 67.49
G Dwarf 1 3.05 4.66 6.25 8.07 10.41 13.97 21.34
M Dwarf 0.3 1.67 2.55 3.42 4.42 5.70 7.65 11.69
M Dwarf 0.1 0.96 1.47 1.98 2.55 3.29 4.42 6.75
Brown Dwarf 0.01 0.30 0.47 0.62 0.81 1.04 1.40 2.13
Jupiter 0.001 0.10 0.15 0.20 0.26 0.33 0.44 0.67

aAssuming a source star distance of Ds = 8 kpc.

Theme 2: Timescales in Microlensing

The Einstein timescale, tE, is the time it takes for the angular separation between the lens and
source in the plane of the sky to change by one Einstein radius. In exoplanetary microlensing
the standard convention is to keep the lens system fixed (except in the cases wherein there
is detectable lens orbital motion) and subsume all of the lens-source relative motion into
the trajectory of the source. Therefore, tE can be calculated from the angular size of the
Einstein ring and the relative proper motion between the source and the lens stars, µrel:

tE = θE/µrel. (2)

For a bulge lens, µrel is typically 4 mas/yr, so a typical value for tE is 30 days. However,
it is evident from the above equation that since the Einstein ring scales as the square root
of the lens mass, the Einstein timescale also scales as the square root of the lens mass. A
table of Einstein timescales for different host masses is given below assuming a source-lens
relative proper motion of 4 mas/yr.

In addition to the Einstein timescale, which reflects a single lens (stellar) microlensing
event, one might also consider the timescale of planetary perturbations and also the source
self-crossing time, t∗. The duration of planetary perturbations varies widely depending on
the caustics, but typical timescales are:

The source self-crossing time is the amount of time it takes the source star to travel one
source radius:

t∗ = θ∗/µrel. (3)

This sets the timescale of finite source effects in microlensing. Typical values are 1 hour.
These timescales matter because they set the cadence of observations required
to characterize the microlensing light curve.
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Table 4. Timescale tE [d] for a grid of (D`, M`), assuming µrel = 4 mas/yr (bulge lens)a

Lens Type M` [M�] D` [kpc]

1.0 2.0 3.0 4.0 5.0 6.0 7.0
Black hole 10 225.5 168.1 110.1
G Dwarf 1 71.3 53.2 34.8
M Dwarf 0.3 39.1 29.1 19.1
M Dwarf 0.1 22.6 16.8 11.0
Brown Dwarf 0.01 7.1 5.3 3.5
Jupiter 0.001 2.3 1.7 1.1

aAssuming a source star distance of Ds = 8 kpc.

Table 5. Timescale tE [d] for a grid of (D`, M`), assuming µrel = 10 mas/yr (disk lens)a

Lens Type M` [M�] D` [kpc]

1.0 2.0 3.0 4.0 5.0 6.0 7.0
Black hole 10 308.1 201.7 150.4 116.5 90.2
G Dwarf 1 97.4 63.8 47.5 36.8 28.5
M Dwarf 0.3 53.4 34.9 26.0 20.2 15.6
M Dwarf 0.1 30.8 20.2 15.0 11.6 9.0
Brown Dwarf 0.01 9.7 6.4 4.8 3.7 2.9
Jupiter 0.001 3.1 2.0 1.5 1.2 0.9

aAssuming a source star distance of Ds = 8 kpc.

Table 6. Timescale of planetary perturbation

Planet Mass ratio qa Timescale

Jupiter 1 · 10−3 ∼1 d
Neptune 5 · 10−5 hours
Earth 3 · 10−6 ∼1 hr

aAssuming a host star with M∗ ∼
1.0M�.
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Theme 3: Microlensing Planet Observables

As with all planet-finding techniques, the planetary parameters that are measured in mi-
crolensing are measured as relative quantities. The two main parameters that characterize
a planet are the mass ratio, q:

q = Mp/M∗, (4)

and the separation, s:

s = a⊥/rE, (5)

where a⊥ is the projection of the planet’s position onto the lens plane (i.e., we cannot measure
the distance in or out of the plane of the star) and rE is the size of the Einstein ring. Hence,
to gain intuition for planets in the context of microlensing, q, s, and the size of the Einstein
ring are the most critical parameters.

5



Table 7. Mass ratio q for Solar System bodies

Object M∗ [M�]

0.3 1.0
Jupiter 3.2e-03 9.5e-04
Saturn 9.5e-04 2.9e-04
Neptune 1.7e-04 5.1e-05
Earth 1.0e-05 3.0e-06
Mars 1.1e-06 3.2e-07
Ganymede 2.5e-07 7.5e-08
The Moon 1.2e-07 3.7e-08

Table 8. Separation s for Solar System planetsa

Planet a [AU] D` [kpc]

4.0 6.0
Neptune 30.07 7.45 8.61
Uranus 19.19 4.76 5.49
Jupiter 9.54 2.36 2.73
Saturn 5.20 1.29 1.49
Mars 1.52 0.38 0.44
Earth 1.00 0.25 0.29
Venus 0.72 0.18 0.21
Mercury 0.39 0.10 0.11

aAssuming a host star with M∗ ∼
1.0M�.
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Theme 4: The Observer, Lens, and Source Planes

In microlensing, we have three key planes: the observer plane, the lens plane, and the source
plane. All of these are parallel to the plane of the sky. Different microlensing effects act in
different planes, and therefore, the relevant version of the Einstein ring is different for the
different effects.

Topics for which the planes are relevant:

• Planets should be in the lens plane to be detectable; rE as compared to a⊥ is the
relevant scale.

• Parallax is an effect measured in the observer plane; r̃E as compared to D⊥ is the
relevant scale.

• Lens orbital motion is measured in the lens plane; rE is the relevant scale.

• Binary sources/xallarap/source orbital motion all relate to the source plane.

In addition, keep in mind that everything we measure is projected onto the plane in
question. We don’t know the inclination of a lens system; we only know the projected
separation between the bodies. We only care about the projection of the Earth and satellite
positions onto the plane of the sky when considering parallax.

Theme 5: Caustics and Light Curves

Caustics (and the underlying magnification map) are critical to interpreting microlensing
light curves. Some key terms we use for caustics are:

• Types of caustics: planetary, central, resonant

• Caustic features: cusps, folds (non-intersecting and closed morphology for two-body
lens systems)

• Light curve features from caustics:

– caustic crossing, caustic entrance, caustic exit

– cusp crossing, cusp approach

• Finite-source effects (i.e., relation between finite angular size of source and light curve
features)

Throughout the workshop we should be sure to point these features out ex-
plicitly in light curves and show the correspondence between the light curve
features and the caustic structures.
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Figure 1 The three relevant planes for gravitational microlensing searches for exoplanets (and lensing
phenomena generally). The source star, residing in its eponymous plane, is located at a distance Ds from
the observer. In the plane of the lens, rE defines the physical size of the Einstein radius while θE defines its
angular scale as measured from the observer. Finally, r̃E identifies the physical size of the Einstein radius
projected onto the plane of the observer. Understanding the geometric relations between these three planes
is fundamental to developing intuition regarding the inherent sensitivity and limitations of microlensing to
exoplanetary systems with different physical parameters.
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Theme 6: Physical Properties from Mass-Distance Relations

Because the microlensing relations all involve combinations of M` and D`, measuring either
one of them necessarily requires measuring two parameters and it also necessarily means
measuring both of them. There are three different observables that give mass-distance rela-
tions:

• angular Einstein radius θE

• microlens parallax πE

• lens flux F`

Throughout the workshop, we want to emphasize the mass-distance relations
that arise from each of these measurements and that the measurement of the
lens mass and distance comes from the intersection of two different relations. A
good way to show this is to use a Mass-Distance plot similar to the figures in Yee+2015 or
Batista+2014 (see below) that show these relations and their intersections. Including uncer-
tainties in these relations would help show how uncertainties in the observables propagate
through to uncertainties in the derived mass and distance.
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Figure 2 The absolute H -band magnitude, MH , and mass, M`, of an isolated lens star as a function of
its distance D` as constrained by measurements of the Einstein radius θE (blue line), the lens flux F` (pink),
and the microlensing parallax πE (black), assuming the source star has an apparent H -band magnitude of
Hs = 18, and that D` = 4 kpc and M` = 0.5 M�. Any two of these techniques will provide a unique solution
for D` and M`, with all three yielding an independent verification.
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Theme 7: Properties of the WFIRST Microlensing Mission

Campaigns:

• WFIRST observes at quadrature, with the middle of the seasons approximately at the
Equinoxes. This is due to the combination of sun angle constraints and the fact that
the bulge is at (RA, Dec) ∼ (18h, -30◦).

• Each campaign will be 72 continuous days at a ∼15 minute cadence

• There will be six campaigns, probably spaced as two in the first year (spring and fall),
two in the fifth year (spring and fall), and two at some point in the middle (either in
spring or fall).

Field:

• camera is 0.28 deg2

• pixel scale is 0.11”

• Original plan was for 10 fields toward (l, b) ∼ (0.5, -1.5)

• Primary filter is W149 (wide ∼H -band); secondary filter is Z087
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