Single Lens Lightcurve Modeling

Scott Gaudi The Ohio State University

Sagan Summer Workshop August 9, 2017

Outline.

- Basic Equations.
- Limits.
- Derivatives.
- Degeneracies.
- Fitting.
 - Linear Fits.
 - Multiple Observatories.
 - Nonlinear fits.
- Complications.
- Summary & References.

Simplest Model.

- Single Source
- Single Lens.
- Rectilinear Trajectory.
 - No acceleration in lens, source, observer.
- Point source.
- Cospatial observers.

Rectilinear Trajectories.

Rectilinear trajectory

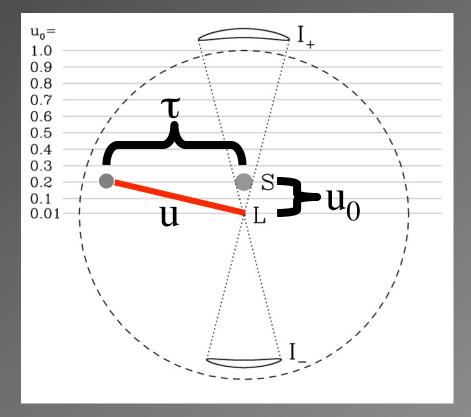
$$u(t) = \left(\tau^2 + u_0^2\right)^{1/2}$$

 $(u, \tau, u_0 \text{ in units of } \theta_{\mathsf{E}})$

where

$$\tau = \frac{t - t_0}{t_{\rm E}}$$

Parameters: t_0 , t_E , u_0



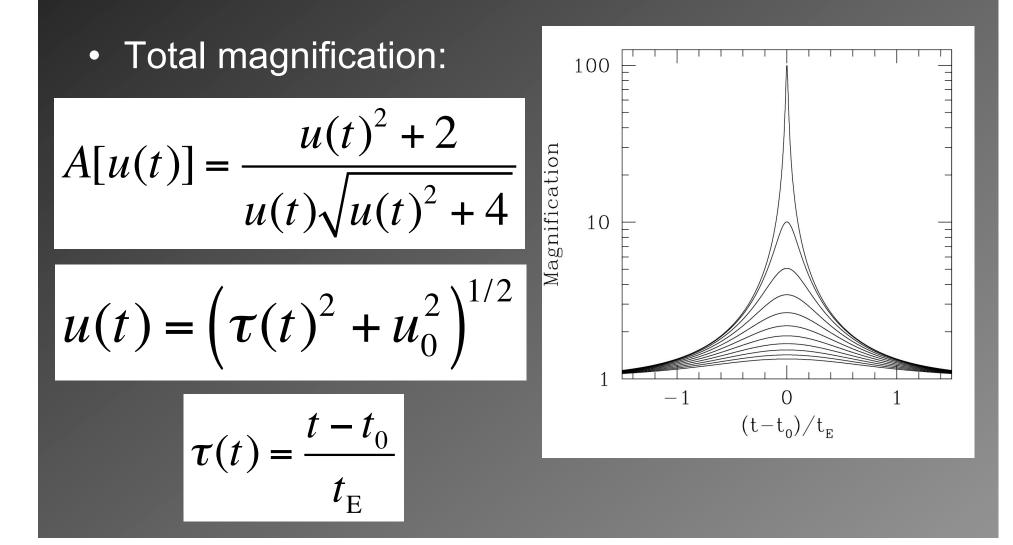
Einstein Timescale.

Time to cross the angular Einstein ring radius.

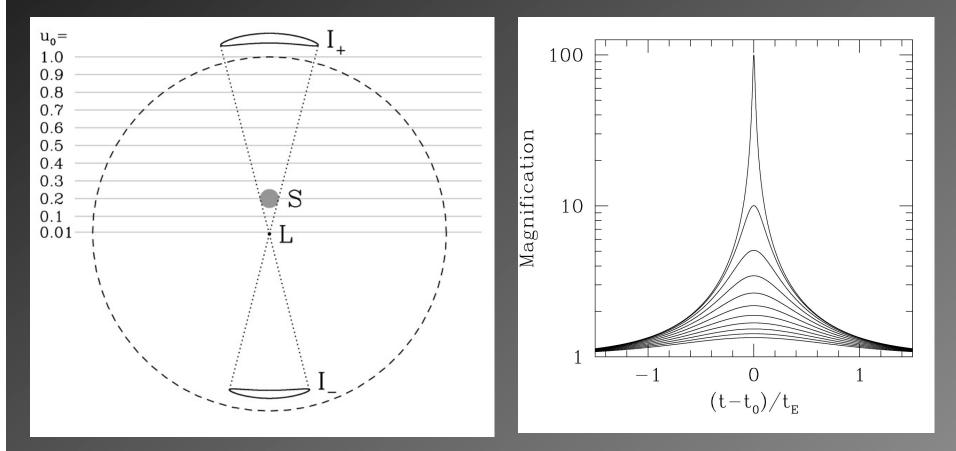
$$t_{\rm E} \equiv \frac{\theta_{\rm E}}{\mu}$$

• μ: relative lens-source proper motion.

Magnification versus Time.

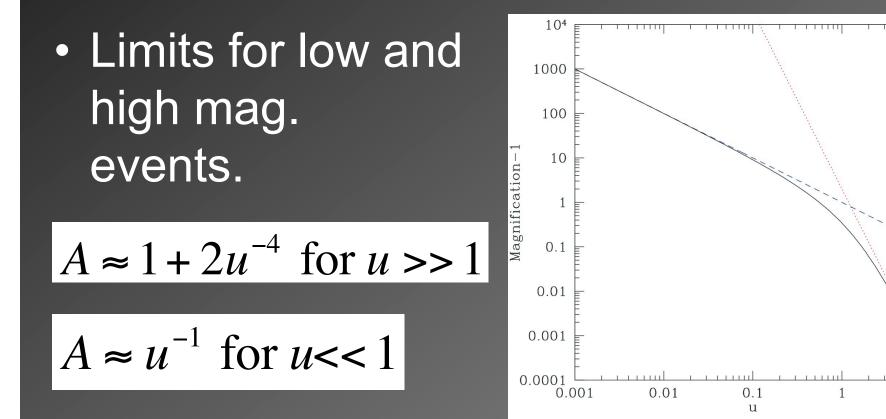


Magnification vs. Time



- Three parameter family of curves.
- Parameters: t_0, t_E, u_0

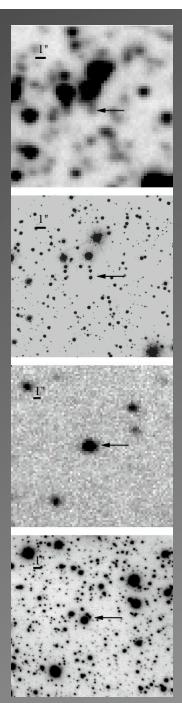
Limits.



10

Flux (not magnification).

- Magnification is *not* directly observable.
- We observe the flux from the lensed source and any unresolved "blends".
- Includes light from:
 - Lens.
 - Companions to the lens.
 - Companions to the source.
 - Unrelated stars.



Simplest form.

$$F(t) = F_s A[u(t)] + F_l + \sum F_{cs,i} + \sum F_{cl,i} + \sum F_{b,i}$$

$$F_b$$

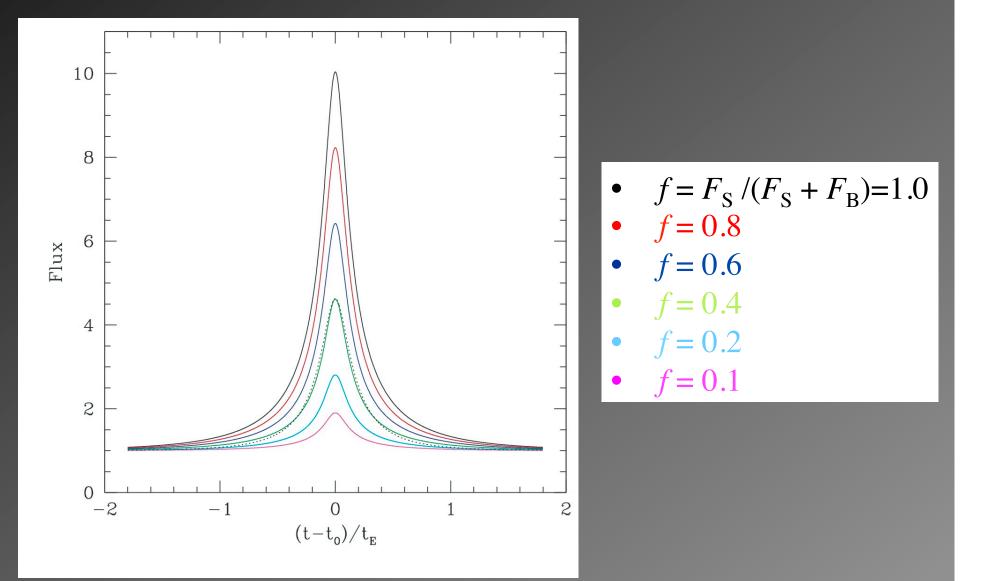
$$F_b$$

Single lens model.

 $F(t) = F_{s}A[u(t;t_{0},t_{E},u_{0})] + F_{h}$

- Five parameters.
 - t_0, t_E, u_0, F_S, F_B
- Note that the flux depends:
 - Linearly on $F_{\rm S}, F_{\rm B}$
 - Non-linearly on t_0 , t_E , u_0
- There are four basic observables:
 - Baseline flux = $F_{\rm S}$ + $F_{\rm B}$
 - Peak Flux.
 - Time of peak flux = t_0
 - Duration (i.e., full width half maximum)

Blended Light Curves.



Derivatives.



Degeneracies - General.

- Five parameters.
 - t_0, t_E, u_0, F_S, F_B
- Four basic observables:
 - Baseline flux, Peak Flux, Time of peak flux, FWHM

$$\frac{F(t)}{F_s + F_b} = fA[u(t;t_0,t_E,u_0)] + (1-f)$$

• Four parameters:

$$- t_0, t_E, u_0, f$$

- Three observables:
 - Peak Flux, Time of peak flux, FWHM

Degeneracies - Low Mag.

• In the limit of $u_0 >> 1$, perfect degeneracy:

$$\frac{F(t)}{F_s + F_b} = fA[u(t;t_0,t_E,u_0)] + (1-f)$$

$$f' = fC^4; \ u'_0 = u_0C; \ t'_E = t_EC^{-1}$$

Degeneracies - Low Mag.

• In the limit of $u_0 >> 1$, perfect degeneracy:

$$\frac{F(t)}{F_s + F_b} \approx f[1 + 2u^{-4}] + (1 - f) = 1 + 2fu^{-4}$$

$$f' = fC^4; \ u'_0 = u_0C; \ t'_E = t_EC^{-1}$$

Degeneracies - Low Mag.

• In the limit of $u_0 >> 1$, perfect degeneracy:

$$\frac{F(t)}{F_s + F_b} \approx 1 + 2f \left[u_0^2 + \left(\frac{t - t_0}{t_E} \right)^2 \right]^{-2}$$

$$f' = fC^4; \ u'_0 = u_0C; \ t'_E = t_EC^{-1}$$

• In the limit of *u*<<*1*, perfect degeneracy:

$$\frac{F(t)}{F_s + F_b} = fA[u(t;t_0,t_E,u_0)] + (1-f)$$

$$f' = fC; \ u'_0 = u_0C; \ t'_E = t_EC^{-1}$$

• In the limit of *u*<<*1*, perfect degeneracy:

$$\frac{F(t)}{F_s + F_b} \approx f[1 + u^{-1}] + (1 - f) = 1 + fu^{-1}$$

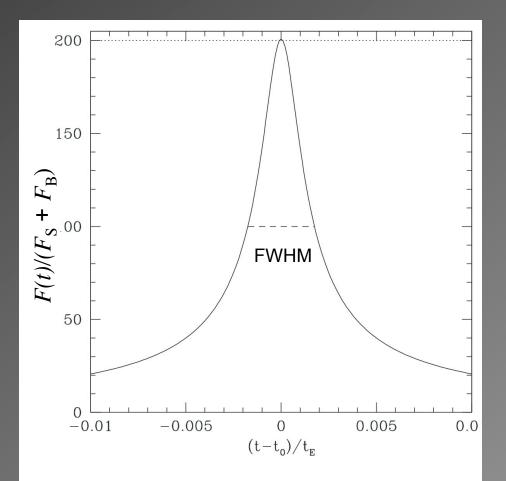
$$f' = fC; \ u'_0 = u_0C; \ t'_E = t_EC^{-1}$$

• In the limit of *u*<<1, perfect degeneracy:

$$\frac{F(t)}{F_s + F_b} \approx 1 + f \left[u_0^2 + \left(\frac{t - t_0}{t_E} \right)^2 \right]^{-1/2}$$

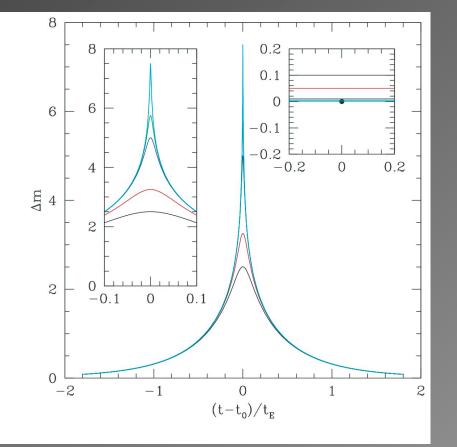
$$f' = fC; \ u'_0 = u_0C; \ t'_E = t_EC^{-1}$$

• Four parameters: $-t_0, t_E, u_0, f$ • Three observables: $- Peak Flux = F_S / u_0$ $- Time of peak flux = t_0$ $- t_{1/2} = 12^{-1/2} u_0 t_E$



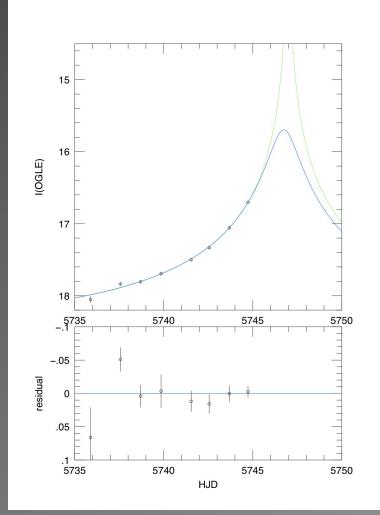
Before peak.

 High magnification light curves appear very similar until just before peak.



Before peak.

- Degeneracy with t₀ for data pre-peak.
- Higher magnification fits generally occur later.



Fitting.

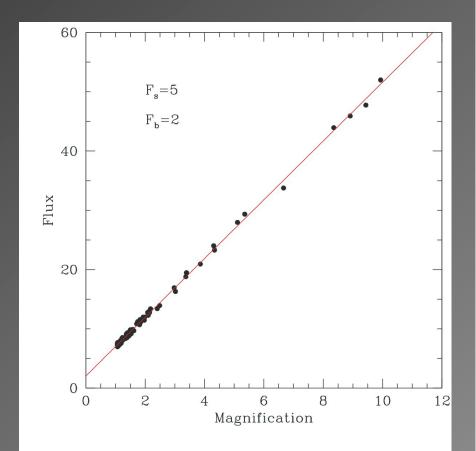
- Basic Problem.
- Data: F_k , σ_k , taken at times t_k
- Model: $F(t) = F_s A[u(t;t_0,t_E,u_0)] + F_b$
- Parameters: $\vec{a} = [t_0, t_E, u_0, F_s, F_b]$
- Want to maximize the likelihood wrt the parameters: $L = \exp(-\chi^2/2)$ (Gaussian errors)

$$\chi^2 = \sum_{k} \left(\frac{F_k - F(t_k)}{\sigma_k} \right)^2$$

(Uncorrelated Errors)

Linear Fits.

- $F_{\rm S}$ and $F_{\rm B}$ are linear parameters.
- Given a set of values of t_0 , t_E , u_0 [and so A(t)], can fit for F_S and F_B analytically.



Linear Fits.

Steps:1. Form the covariance matrix:

$$c_{ij} = b_{ij}^{-1}, \ b_{ij} = \sum_{k} \frac{\partial F(t)}{\partial a_{i}} \bigg|_{t=t_{k}} \frac{\partial F(t)}{\partial a_{j}} \bigg|_{t=t_{k}} \sigma_{k}^{-2}$$

2. And the vector:

$$d_i = \sum_k F(t_k) \frac{\partial F(t)}{\partial a_i} \bigg|_{t=t_k} \sigma_k^{-2}$$

3. The parameters which minimize χ^2 are then:

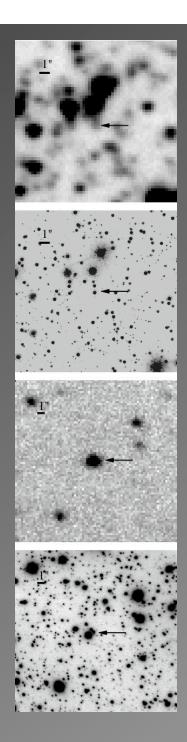
$$a_{best,i} = \sum_{j} c_{ij} d_{j}$$

Mutliple Observatories and/or Filters.

- Generally, $F_{\rm S}$ and $F_{\rm B}$ will depend on the filter and observatory.
- Even assuming the same wavelength response, blend flux can change for different observatories.
- In reality, wavelength responses will vary.

 $F_{1}(t) = F_{s,1}A[u(t;t_{0},t_{E},u_{0})] + F_{b,2}$ $F_{2}(t) = F_{s,2}A[u(t;t_{0},t_{E},u_{0})] + F_{b,2}$

- Total number of parameters = 3+2×N_o
- Incur no additional "expense" because they are linear.



Non-linear minimization.

- t_0 , t_E , u_0 are non-linearly related to F(t).
- The general problem of finding non-linear parameters which minimize χ^2 (the global "best-fit") is hard.
 - False (local) minima.
 - Poorly-behaved likelihood surfaces.
 - Strong continuous degeneracies.
 - Discrete degeneracies.
- Fortunately, the single-lens problem is not too problematic (for good sampling).

Methods.

- Grid searches.
 - Inefficient.
- Newton's Method.
- Markov Chain Monte Carlo.
 - Not really designed for minimization, but can be 'forced' to work.
- Canned routines:
 - AMOEBA (Numerical Recipes)
 - MPFIT (IDL)
 - EMCEE (Python)
 - MultiNest (Fortran 90, with wrappers in C/C++, R, Python, Matlab
- Minimization can be made faster and more robust by stepping in parameters that are more directly related to the data.
 - For example, for high-magnification events: F_{max} , FWHM

Newton's Method.

- Find the root of a function *f*(*x*).
- Begin with a guess for the parameter *x*₀.

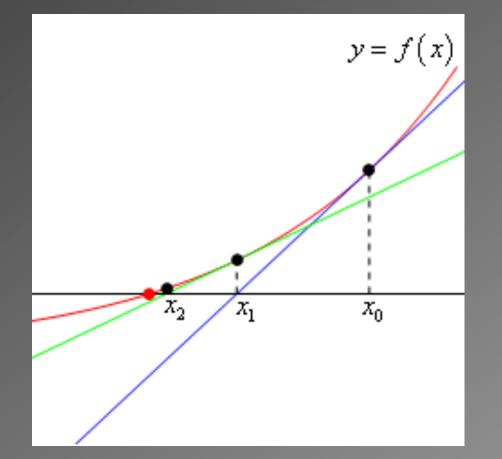
• Evaluate:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

• Iterate:

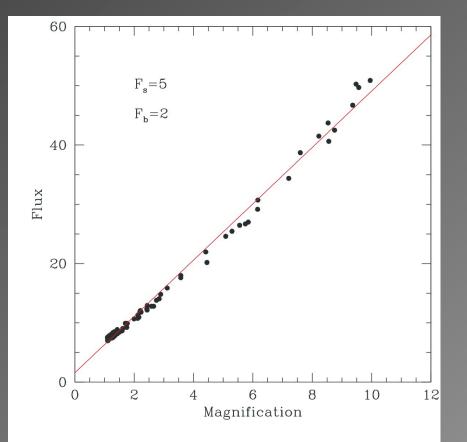
$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

• Can be extended to *N* dimensions.



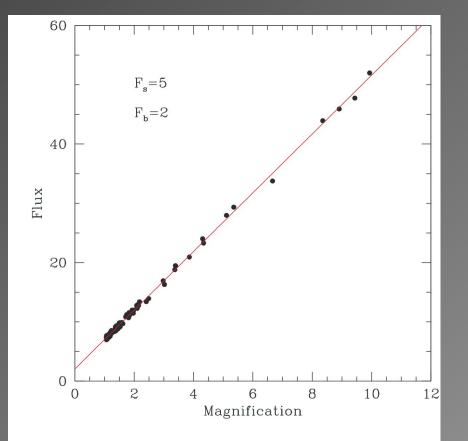
Hybrid Fitting.

- All fits to microlensing light curves involve a hybrid method:
 - 1. Start with a trial set of non-linear parameters, which specify the magnification versus time.
 - 2. Linearly fit the blend and source fluxes for that trial set.
 - 3. Evaluate χ^2 for that set of nonlinear parameters.
 - 4. Minimize χ^2 .
- Note that the uncertainties evaluated based on this χ^2 are underestimated: do not account for the uncertainty in F_s, F_b at fixed magnification.



Hybrid Fitting.

- All fits to microlensing light curves involve a hybrid method:
 - 1. Start with a trial set of non-linear parameters, which specify the magnification versus time.
 - 2. Linearly fit the blend and source fluxes for that trial set.
 - 3. Evaluate χ^2 for that set of nonlinear parameters.
 - 4. Minimize χ^2 .
- Note that the uncertainties evaluated based on this χ^2 are underestimated: do not account for the uncertainty in F_s, F_b at fixed magnification.



Complications.

- Correlated uncertainties.
- Poor sampling and incomplete coverage.
 May require fixing parameters.
- Higher-order effects.
 - Parallax and xallarap.
 - Finite source.
- Most methods fail (miserably) for most binary lenses.

Summary.

- Simplest microlensing light curve is a function of 3+2×N_o parameters.
 - Three non-linear parameters t_0 , t_E , u_0
 - $2 \times N_o$ linear parameters F_s , F_b for each observatory/filter combination.
- Four basic observables: t_E, u₀, F_s, F_b can be degenerate.
- Linear parameters can be found analytically.
- Nonlinear parameters can be found using a variety of techniques.
- Variety of complications...

References.

- Dominik 2009, MNRAS, 393, 816
- Ford 2005, AJ, 129, 1706
- Ford 2006, ApJ, 642, 505
- Gould, arXiv:astro-ph/0310577
- Thomas & Griest 2006, ApJ, 640, 299
- Wozniak & Paczynski 1997, ApJ, 587, 55