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Simplest Model. 

•  Single Source 
•  Single Lens. 
•  Rectilinear Trajectory. 

– No acceleration in lens, source, 
observer. 

•  Point source. 
•  Cospatial observers. 



Rectilinear Trajectories. 

•  Rectilinear trajectory 

u(t) = τ 2 + u0
2( )1/2

τ =
t − t0
tE

where

τ

(u, τ, u0 in units of θE) 

Parameters: t0, tE, u0 

u u0



Einstein Timescale. 

•  Time to cross the angular Einstein ring 
radius. 

•   µ: relative lens-source proper motion. 

tE ≡
θ E

µ



Magnification versus Time. 

•  Total magnification: 

A[u(t)] = u(t)2 + 2
u(t) u(t)2 + 4

u(t) = τ (t)2 + u0
2( )1/2

τ (t) = t − t0
tE



Magnification vs. Time 

•  Three parameter family of curves. 
•  Parameters: t0, tE, u0 



Limits. 

•  Limits for low and 
high mag. 
events. 

A ≈ 1+ 2u−4  for u >>1

A ≈ u−1  for u<<1 (Paczynski 1996) 



Flux (not magnification). 
•  Magnification is not directly 

observable. 
•  We observe the flux from the 

lensed source and any 
unresolved “blends”. 

•  Includes light from: 
– Lens. 
– Companions to the lens. 
– Companions to the source. 
– Unrelated stars.  



Simplest form. 
F(t) = FsA[u(t)]+ Fl + Fcs,i∑ + Fcl ,i∑ + Fb,i∑

Fb

F(t) = FsA[u(t)]+ Fb



Single lens model. 

F(t) = FsA[u(t;t0 ,tE ,u0 )]+ Fb
•  Five parameters. 

–  t0, tE, u0, FS,  FB 
•  Note that the flux depends: 

–  Linearly on FS,  FB 
–  Non-linearly on t0, tE, u0  

•  There are four basic observables:  
–  Baseline flux = FS + FB 
–  Peak Flux. 

–  Time of peak flux = t0 
–  Duration (i.e., full width half maximum) 



Blended Light Curves. 

•  f = FS /(FS + FB)=1.0
•  f = 0.8
•  f = 0.6
•  f = 0.4
•  f = 0.2
•  f = 0.1



Derivatives. 



Degeneracies - General. 
•  Five parameters. 

–  t0, tE, u0, FS,  FB 

•  Four basic observables:  
–  Baseline flux, Peak Flux, Time of peak flux, FWHM 

F(t) = FsA[u(t;t0 ,tE ,u0 )]+ Fb
F(t)
Fs + Fb

= fA[u(t;t0 ,tE ,u0 )]+ (1− f )

•  Four parameters: 
–  t0, tE, u0, f 

•  Three observables:  
–  Peak Flux, Time of peak flux, FWHM 



Degeneracies - Low Mag. 
•  In the limit of u0>>1, perfect degeneracy:  

•  Observed flux is invariant under the substitution: 

F(t)
Fs + Fb

= fA[u(t;t0 ,tE ,u0 )]+ (1− f )

!f = fC 4;  !u0 = u0C;  !tE = tEC
−1



Degeneracies - Low Mag. 
•  In the limit of u0>>1, perfect degeneracy:  

•  Observed flux is invariant under the substitution: 

F(t)
Fs + Fb

≈ f [1+ 2u−4 ]+ (1− f ) =1+ 2 fu−4

!f = fC 4;  !u0 = u0C;  !tE = tEC
−1



Degeneracies - Low Mag. 
•  In the limit of u0>>1, perfect degeneracy:  

•  Observed flux is invariant under the substitution: 

F(t)
Fs + Fb

≈ 1+ 2 f u0
2 +

t − t0
tE
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!f = fC 4;  !u0 = u0C;  !tE = tEC
−1



Degeneracies - High Mag. 
•  In the limit of u<<1, perfect degeneracy:  

•  Observed flux is invariant under the substitution: 

F(t)
Fs + Fb

= fA[u(t;t0 ,tE ,u0 )]+ (1− f )

!f = fC;  !u0 = u0C;  !tE = tEC
−1



Degeneracies - High Mag. 
•  In the limit of u<<1, perfect degeneracy:  

•  Observed flux is invariant under the substitution: 

F(t)
Fs + Fb

≈ f [1+ u−1]+ (1− f ) =1+ fu−1

!f = fC;  !u0 = u0C;  !tE = tEC
−1



Degeneracies - High Mag. 
•  In the limit of u<<1, perfect degeneracy:  

•  Observed flux is invariant under the substitution: 

F(t)
Fs + Fb

≈ 1+ f u0
2 +

t − t0
tE

#

$
%

&

'
(

2)

*
+
+

,

-
.
.

−1/2

!f = fC;  !u0 = u0C;  !tE = tEC
−1



Degeneracies - High Mag. 

•  Four parameters: 
– t0, tE, u0, f 

•  Three observables:  
– Peak Flux = FS /u0 
– Time of peak flux = t0 
–  t1/2 = 12-1/2 u0 tE 

FWHM 

F(
t)/

(F
S 

+ 
F B

)



Before peak. 

•  High magnification 
light curves appear 
very similar until just 
before peak. 



Before peak. 
•  Degeneracy with t0 for 

data pre-peak. 
•  Higher magnification 

fits generally occur 
later. 



Fitting. 
•  Basic Problem. 

•  Data: 

•  Model:  

•  Parameters: 

•  Want to maximize the likelihood wrt the 
parameters: 

•  Where: 

Fk ,  σ k ,  taken at times tk
F(t) = FsA[u(t;t0 ,tE ,u0 )]+ Fb

a = [t0 ,tE ,u0 ,Fs ,Fb ]

χ 2 =
Fk − F(tk )

σ k
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k
∑

L = exp(−χ 2 / 2)

(Uncorrelated Errors)

(Gaussian errors)



Linear Fits. 
•  FS and FB are linear 

parameters. 
•  Given a set of 

values of t0, tE, u0 
[and so A(t)], can fit 
for FS and FB  
analytically.



Linear Fits. 
Steps:
1.  Form the covariance matrix:

2.  And the vector:

3.  The parameters which minimize χ2 are then:
abest ,i = cijd j

j
∑

cij = bij
−1,   bij =

∂F(t)
∂ai t=tk

∂F(t)
∂ajk

∑
t=tk

σ k
−2

di = F(tk )
∂F(t)
∂ai t=tkk

∑ σ k
−2



Mutliple Observatories 
and/or Filters. 

•  Generally, FS and FB  will depend on the filter 
and observatory. 

•  Even assuming the same wavelength response, 
blend flux can change for different 
observatories. 

•  In reality, wavelength responses will vary. 

•  Total number of parameters = 3+2×No 

•  Incur no additional “expense” because they are 
linear. 

F1(t) = Fs,1A[u(t;t0 ,tE ,u0 )]+ Fb,2

F2 (t) = Fs,2A[u(t;t0 ,tE ,u0 )]+ Fb,2

                     ...



Non-linear minimization. 
•  t0, tE, u0 are non-linearly related to F(t). 
•  The general problem of finding non-linear 

parameters which minimize χ2 (the global 
“best-fit”) is hard.  
– False (local) minima. 
– Poorly-behaved likelihood surfaces. 
– Strong continuous degeneracies. 
– Discrete degeneracies. 

•  Fortunately, the single-lens problem is not too 
problematic (for good sampling). 



Methods. 
•  Grid searches. 

–  Inefficient. 
•  Newton’s Method.   
•  Markov Chain Monte Carlo.   

–  Not really designed for minimization, but can be ‘forced’ to work. 
•  Canned routines: 

–  AMOEBA (Numerical Recipes) 
–  MPFIT (IDL) 
–  EMCEE (Python) 
–  MultiNest (Fortran 90, with wrappers in C/C++, R, Python, Matlab 

•  Minimization can be made faster and more robust by 
stepping in parameters that are more directly related to the 
data. 
–  For example, for high-magnification events: Fmax, FWHM 



Newton’s Method. 

•  Find the root of a 
function f(x) . 

•  Begin with a guess for 
the parameter x0. 

•  Evaluate: 

•  Iterate: 

•  Can be extended to N 
dimensions. 

x1 = x0 −
f (x0 )
"f (x0 )

xn+1 = xn −
f (xn )
"f (xn )



Hybrid Fitting. 
•  All fits to microlensing light curves 

involve a hybrid method: 
1.  Start with a trial set of non-linear 

parameters, which specify the 
magnification versus time. 

2.  Linearly fit the blend and source 
fluxes for that trial set. 

3.  Evaluate χ2 for that set of non-
linear parameters. 

4.  Minimize χ2 . 
•  Note that the uncertainties 

evaluated based on this χ2 are 
underestimated: do not account 
for the uncertainty in Fs, Fb at fixed 
magnification.  



Hybrid Fitting. 
•  All fits to microlensing light curves 

involve a hybrid method: 
1.  Start with a trial set of non-linear 

parameters, which specify the 
magnification versus time. 

2.  Linearly fit the blend and source 
fluxes for that trial set. 

3.  Evaluate χ2 for that set of non-
linear parameters. 

4.  Minimize χ2 . 
•  Note that the uncertainties 

evaluated based on this χ2 are 
underestimated: do not account 
for the uncertainty in Fs, Fb at fixed 
magnification.  



Complications. 

•  Correlated uncertainties. 
•  Poor sampling and incomplete coverage. 

– May require fixing parameters. 
•  Higher-order effects. 

– Parallax and xallarap. 
– Finite source.  

•  Most methods fail (miserably) for most 
binary lenses. 



Summary. 
•  Simplest microlensing light curve is a function of 

3+2×No parameters. 
–  Three non-linear parameters t0, tE, u0  
–  2×No linear parameters Fs, Fb for each observatory/filter 

combination.  
•  Four basic observables: tE, u0, Fs, Fb  can be 

degenerate. 
•  Linear parameters can be found analytically. 
•  Nonlinear parameters can be found using a variety of 

techniques.  
•  Variety of complications… 
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