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Hubbie

WFIRST Field: ~90 times HST/ACS FOV: ~200 times HST/WFC3 IR FOV

Microlensing Observations: ~6 (or 7) * 72 continuous days
10 pointings in the Galactic bulge
Integration time in W149: 52 sec, one observation every 15 minutes




Expected Accuracies in
Proper Motion Measurements

Measurement Uncertainty in the position of a point source:
A ~ FWHM/(S/N)
FWHM ~ 0.1 arcsec
Counts in a single measurement for a star with V ~20: > 10,000
S/N ~100

Positional uncertainty ~ 0.1 arcsec/100 ~ 1 milliarcsec
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Sitting in LA, this corresponds to measuring an insect moving
by the width of an US quarter.

Accuracy increases further with the number of observations by /N.



Galactic latitude (degrees)

Earlier PM Measurements of the Bulge

* OGLE-II: PMs of ~100 stars with a precision of 0.8-3.5 mas yr—! (Eyer & Wo zniak 2001;
Sumi et al. 2004)

e Space-based PMs: a number of studies of clusters that use PMs to discriminate the cluster from
the field.

e Kuijken & Rich (2002): HST observations to bulge proper motion studies,

e Stank Window: poster outside

* PMs from Microlensing follow-up observations with HST

* RV measurements by BRAVA collaboration

* PM measurements from SWEEPS Transit and microlensing studies
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* Akey galactic
component

About 15-20% of the Mllky e

Way stars

When we look towards
the bulge, we also see a
large population of disk
objects

For ~75% of the
microlensed source stars

in the Bulge, location can

be confirmed

Many projects, such as
— Blue stragglers

— IMF

— WDs
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SWEEPS Project (Saggitarius Window Eclipsing ExoPlanet Search)
(Sahu et al. 2004, Nature, 443, 1038)
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SWEEPS Project
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Sagittarius Window
Eclipsing Extrasolar
Planet Search

2027x202”
Continuous monitoring
for 7 days

180,000 stars to V ~ 27.
245,000 starstoV ~ 30

265 | images
254 V images
339 sec Int. time

No transits missed

Deepest Galactic field
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Noise Is close to
Poisson limit for
unsaturated
stars.

Slightly higher
for saturated
stars.

Sensitive to
detecting Jovian
planets to V~26
(corresponding
to 0.44 M@).
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Black: V
Red: |

Box-fitting power

spectrum
SIN>5

Folded data

Light curve fitting
S/N(PSF) must be
>06.5

Expanded view of
transit



We discovered 16
Planetary
Candidates.
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,r,m,., g .0' ‘*h“" Wi bl

w -

' SWEEPS—-07, V=21.5, P=1.75d

! Example light curves

| Blue: V-band

i Red: I-band

| Black: Model fit

Il Includes:

| . 4 Two RV-confirmed

'sw:m;s-:wi v'-zs:'r:p-:os;d' | planets (SWEEPS-04
sl W and SWEEPS-11).
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e Stars with M > 20 M@ are thought
. to end their lives as black holes.

There should be 100 million BHs in }

I the Galaxy.

e A large fraction of them are

expected be isolated, because:

= ~25% start as single stars

' =close binaries lead to merging
during SN explosion

- very wide binaries produce single
BHs due to orbital separation by
the “kick velocity”.

o Yet, there has never been an
. unambiguous detection of an
isolated black hole.

® Microlensing is the only method
capable of detecting solitary BHs.
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Mass discrepancy of stellar remnants

* Masses of NSs and BHs in binary systems:
»NS masses ~1.4M,_,
»BH masses ~8 +/- 1M,
* Theoretical Models:
»PNS masses ~ 1.2-1.6M
»BH masses 3 to 20 M,
*LIGO observations: ~10-30 M,

eObserved BH masses from binaries are a biased and
minority sample
eHST programs can provide an unbiased mass and

velocity distribution for isolated NSs and BHs, through
microlensing.



Stellar Mass Black Holes
and Microlensing

= (4GM/C?) DL Drs/Ds
TE Re/V= [(4GM/C?) D1, Dps/Ds]*>/V

Mlens = (TeV C)z DS/(4G Dy DLis)

S0 the mass estimates from timescales are
only statistical in nature.

Amplification
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Microlensing can break the degeneracy

2 - -
A = [u2+2]/[u(u?+4)] N ]
Amplification is a pure function of u PRI ERE R S KA
>~ 0 ': N :' —

The astrometric shift: : .

§ = U Og/[u2+2] T -
Thus 8 is a direct measure of 6 | :
Of = Re/DL=[(4GM/C?) Dps/(D1. Ds)]*> ) ox )

1.5
eAstrometric shift, combined with & |
the distances provide an =
unambiguous measurement of the £

mass of the lens.




resid. mag.

Distance to the Lens

e Earth’s motion around the

15[ E Sun introduces a distortion
% 1 _ _ on the microlensing light
c E g curve.
S 05 [ -

o bt 1 > vd  *Such “parallax”
_IOOt ., (Edays] 100 measurements provide an
Y S A — estimate of the distance to
0.02

the lens.

-
|III lllll
e
'—.—'
H
o
H
= o

—0.02
—0.04

00 ) 00 * Ground-based follow-up
t — t, [days] observations can be used for
parallax measurements.
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Distance to the Source

—— 1 eFor microlensing events

‘ o observed towards the
Galactic bulge, >95% of the
sources lie within the bulge.

* The observed CMD is often
useful in confirming that the
source is indeed in the
bulge.

0 1 2 3 4
V(FBO6W) — I(FB14W)

Sahu et al. 2006, Nature, 443,534 'SpeCtI‘OSCOPiC observations
can also be used for spectra
type/distance measurements.



Physical parameters from astrometric

microlensing
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* Parallax signal= D_

e CMD= Ds

®» Mass of the Lens
‘TE =>V|_

e Unequivocal detection of BHs
with measurements of:
the mass,
the distance and
the velocity
from a single technique.




Il. Detecting and Measuring the Masses of Stellar Remnants
(GO-12586, PI: Sahu)

eFields/ Targets
4 ACS fields, each with ~180,000
stars
8 WFC3/UVIS fields, each with
~120,000 stars
Total of 1.7 million stars, 50% with
astrometric measurements

e Observing Cadence
One visit every 2 weeks over two 4-
month windows
64 visits per year, for 3 years
Optimized for long-duration events.

This provides a few more
epochs for PM measurements.






Example PM Measurements
(Clarkson, Sahu et al. 2008)

20.60




PMs of Disk and Bulge Components

0.05

0.5 A 1.5

FEOEBW-FB14W

E-.i:

0.76+0.130 mas/yr




Discovery of Blue Straggler Stars in the Bulge
(Clarkson, Sahu et al. 2011)

Blue Straggler Stars are old stars made more luminous and hotter by
mass transfer

— In brightness and color, they mimic the appearance of much younger stars
— We don’t yet know the full story for how these objects form

a Stellar collision b Stellar cannibalism

24



Blue Stragglers in the Milky Way Bulge
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‘Result: 42 objects with bulge kinematics

in the BSS region of the CMD CMD from bulge-selected stars
Clarkson et al. 2011 ApJ in press



Photometric variability

*Some bulge BSS should be associated with
present-day close binaries
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What does this tell us about the Bulge?

* Of the bulge stars DU e Le SR
with brightnessand = = = . &
color of young stars, = . oo
most are actuallyold . .. o oo
blue stragglers. R e

+ This implies that, . SOl s e
within this regionof - NGRS
the Milky Way bulge, e
fewer than about 3.4
percent of the stars = .o o D DR
are relatively young . - el -

. - 8 g T e e L CHAD FUS.
(<5 billion years old). S R

S DL

- e o ¢ o/ = SR R '
<2 s AUSERalS™E R -

-+ PHoto: Akira Fujii-- *



Detection of WD population in the Bulge
(Calamida, Sahu et al. 2015).

Ng = 241,416
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PMs were measured with an accuracy of = 0.1 masyr—1 (= 4 kms—1) at V= 25.5 mag, and =

0.5 mas yr—! at V=28 mag, which allowed us to separate disk and bulge stars and obtain a
clean bulge color-magnitude diagram.

We 1dentified for the first time a white dwarf (WD) cooling sequence in the Galactic bulge.



Ms = 49 860
Spectroscopy.
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About 30% of the WDs are systematically redder than the cooling tracks for CO-core WDs.

This evidence would suggest the presence of a significant number of He-core, low-mass WDs
and WD-main sequence binaries in the bulge.

This hypothesis 1s further supported by the finding of two dwarf novae in outburst, two short-
period (P 1 d) ellipsoidal variables, and a few candidate cataclysmic variables in the same field.



Mass Function of the Pure Bulge Population
Calamida, Sahu et al. 2016).

F606W — F814W [Mag] F606W — F814W [Mag]

We have derived the Galactic bulge initial mass function of the SWEEPS
field down to 0.15 Mo,



Mass Function of the Pure Bulge Population
(Calamida, Sahu et al. 2016).
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In the high-mass range, our derived mass function agrees well with the mass function
derived for other regions of the bulge. In the low-mass range however, our mass
function 1s slightly shallower, which suggests that separating the disk and bulge
components 1s particularly important in the low- mass range.



PM measurements with WFIRST

WFIRST will measure PMs of ~150 million stars of all
spectral types, with an accuracy of ~0.3 mas/yr. They
can be used for:

e Bulge-disk separation, which allows study of pure bulge population.
e Study of present-day internal kinematics of the bulge.

e Kinematics of the microlensed sources.

e Confirming that microlensed sources are indeed in the bulge.

o Initial guesses on timescales of lens-source separation.

e Combining with RV to get 3-D kinematics of the bulge.

e Many follow-up studies.



PM Measurements with WFIRST

* GAIA’s sensitivity in the crowded bulge field is low.

e For PM and BH studies: it is best if a small fraction (~1 hr observation
every ~3 to 10 days, which would require less than 1 day per year) of the
microlensing campaign can be extended to the entire lifetime.



