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Talk Outline 
•  Quick slide on binary sources 
•  Binary lenses 

–  Lens equation 
–  Lens images 
–  Caustics and Cusps 
–  Magnification calculations for modeling 
–  Calculation of light curves 

•  Binary Lens vs. Binary Source 
– False planetary events 
– Binary Lens Plus Binary Source 

•  Planetary events not easily identified by eye 



Binary Source Events 
fainter source, higher 

magnification 

But, source stars have different colors 

Binary companions cause orbital motion: 
“xallarap”, which can be confused with 

microlensing parallax 

Possible ambiguity with planetary events (Gaudi 1998) 



Figure 1 The three relevant planes for gravitational microlensing searches for exoplanets (and lensing

phenomena generally). The source star, residing in its eponymous plane, is located at a distance Ds from

the observer. In the plane of the lens, rE defines the physical size of the Einstein radius while ✓E defines its

angular scale as measured from the observer. Finally, r̃E identifies the physical size of the Einstein radius

projected onto the plane of the observer. Understanding the geometric relations between these three planes

is fundamental to developing intuition regarding the inherent sensitivity and limitations of microlensing to

exoplanetary systems with di↵erent physical parameters.
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Binary Lenses Are More Complicated 

observer plane              lens plane                source plane 
                                  = image plane 

all lenses at distance DL 

α =
4GM
c2r

Gravitational bending angle in small 
angle in small angle approximation:  



Perfect alignment gives an “Einstein Ring” image, and images are highly magnified 
near the Einstein ring when the alignment is nearly perfect. Planets are most easily 
detected near the Einstein ring (typically at 2-3 AU) when they distort one of the 
lensed images. 

source 
(not seen) 

image (observed) 

lens 

Lensed Images for a Single Lens Mass 
(Einstein 1936) 
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Lens Equation 
use angular coordinates 
or coordinates projected 
to the lens plane 
 
 
lens equation with 
Cartesian coordinates 
w = source position 
z = image position 
xi = ith lens mass position 
 
Scale to angular Einstein 
radius  
 
 
switch to complex 
notation  
(Witt 1990, Rhie 1997) 
 
 

 

!z − !w = 4GM1

c2

!z − !x1
!z − !x1

2 +
4GM 2

c2

!z − !x2
!z − !x2

2 +"

 
θE = 2

GM
c2

DS − DL

DSDL
     DS ,  DL =  source, lens distances

 

w = z − εi
z − xii=1

n

∑    for n point masses 

 (where ε i =
Mi

M i∑
 and  z  is complex conjugate of z)



Solve the Lens Equation: Inverse Ray 
Shooting 

•  If we know the image position, z, then it is easy to solve for the source 
position, w 

•  This is called inverse ray shooting (or inverse ray tracing) 
+ completely general; can be done for any lens configuration, i.e. > 4 masses,    

 galaxies, galaxy clusters 
− very slow, because many rays must be shot 
+ basis of magnification map method for a brute force search for light curve 

 models – this uses one magnification map for many calculations 
− many maps must be calculated to include lens orbital motion 

w = z −
εi

zi − xii=1

n

∑



Solve the Lens Equation 
•  Take complex conjugate of lens equation to give equation for      
•  eliminate     to yield equation for only  
•  multiply by the denominators to clear the fractions and create a 

polynomial equation of order n2 + 1 
•  for n = 1, polynomial is a quadratic with 2 solutions 
•  for n = 2, polynomial is 5th order with 3 or 5 solutions 

–  polynomial always has 5 solutions, but some are not solutions to the lens 
equation 

•  for n = 3, polynomial is 10th order with 4, 6, 8, or 10 solutions 
•  minimum number of solutions is n + 1 è 1 for each source and lens 

–  when alignment is poor, there is 1 image direct from the source and very 
low magnification images bent by a large angle by each lens 

•  maximum number of images is 5n – 5 for n > 1 (Rhie 2003; 
Khavinson & Neumann 2006) 
–  Rhie constructed solutions with 5n – 5 solutions and Khavinson & 

Neumann proved that is the upper limit solving a pure math problem 
(extension of the fundamental theorem of algebra) 

z
zz



Solve the Lens Equation (2) 

•  3rd and 4th order polynomial equations have analytic solutions, but 5th 
order equations do not      

•  Recipe for lens equation solutions 
–  Solve for image positions,    , numerically using standard root solving 

routines (or custom routines) 
–  double precision is probably necessary for planetary binary events 
–  quadruple precision is needed for many triple lens cases (available in 

most fortran implementations) 
–  plug     values from polynomial solution back into lens eq.                             

to find true lens eq. solutions 
•  Relate image positions to magnification 

–  lensing doesn’t change surface brightness 
–  image brightness = [(image area)/(source area)] × (surface brightness) 

z

z w = z −
εi

zi − xii=1

n

∑



Magnification from the Lens Equation 
•  (image area)/(source area) from lens equation: 

•  The magnification for a point source can be derived from the Jacobian 
determinant of the lens equation: 

•  Where 
 
•  This the the Jacobian determinant of the inverse mapping from the image to 

the source plane, so the magnification for each image is given by  

   evaluated at the position of each image 
•  Critical curves are image locations where |J| = 0, i.e. infinite magnification 
•  Caustics are the corresponding source locations 

J = ∂w
∂z

∂w
∂z

−
∂w
∂z

∂w
∂z

= 1− ∂w
∂z

2

∂w
∂z

=
εi

z − xi( )2i
∑

A = 1
J

w = z −
εi

zi − xii=1

n

∑



New Lens Image Pairs Appear on Caustics 

•  Lensing = smooth 
mapping from 
image plane to 
source plane 

•  Source plane = 
what we would see 
if there was no lens 

•  Image plane = what 
we really see 

•  Caustic crossings 
give 2 new images 

•  Infinite 
magnification for 
point sources 

Magnification inside 
caustic: ~ x-1/2 

3 images 

1 image 



lens star and planet = 
black �’s  
 
blue � = source  
 
green ¢ = Einstein ring 
 
red curve = caustic 
 
new images created or 
destroyed at caustic 
crossings 
 
Highly magnified images 
near Einstein ring 

Lensed images at µarcsec resolution 
View from telescope 

video by Scott Gaudi 

OGLE-2003-BLG-235 = 1st planetary microlensing event 
Bond et al. (2004) 



Simulated Lightcurve of 1st Planetary Event 

Best fit light curve simulated on an OGLE image

Simulated version 
of actual data with 
~1” seeing 

video by Andrzej Udalski 



 

OGLE-2005-BLG-390Lb - “lowest” mass exoplanet 

Source passes over caustic => significant finite 
source effect and clear measurement of t*  

Giant source star means lens star detection will be 
difficult 

A 5.5 M⊕ planet 
discovered by 
microlensing: 
OGLE-2005-
BLG-390Lb. The 
lowest mass planet 
discovered when 
announced in 2006. 

PLANET, OGLE & MOA Collaborations 
Beaulieu et al. (2006) 



OGLE-2005-BLG-390Lb at high resolution 

•  Simulated view from 10,000 km aperture space telescope 
•  H-α filter Solar images generate cool videos!               (videos by Bennett & Williams) 



Exoplanet lensing video  



OGLE-2005-BLG-390Lb at high resolution 

5.5 Earth-mass planet vs. 16.5 Earth-mass planet. 
Only the total image area is observable. 5.5 Earth-mass is near limit for giant source. 



Caustics and Cusps Control Image 
Magnification 

Lensing magnification is 
high just inside the caustic 
curve.  
 
The sharp points on the 
caustic curves are called 
cusps. They indicate 
higher magnification not 
only inside but also 
outside the caustic 
 
Most planetary light curve 
signals are due to caustic 
crossings and cusp 
approaches. 
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Table 2
Lensing Parameters

Parameters Model

Standard Parallax (u0 > 0) Parallax (u0 < 0) Orbit + Parallax Xallarap (P = 1 yr)

χ2/dof 2347.81/1592 1598.22/1590 1596.24/1590 1595.17/1588 1601.53/1588
t0 (HJD′) 6040.24 ± 0.01 6040.33 ± 0.01 6040.33 ± 0.01 6057.49 ± 0.10 6040.33 ± 0.01
u0 0.108 ± 0.001 0.098 ± 0.001 −0.098 ± 0.001 −0.832 ± 0.002 0.098 ± 0.001
tE (days) 24.38 ± 0.07 26.47 ± 0.11 26.46 ± 0.11 25.64 ± 0.08 26.46 ± 0.12
s1 1.687 ± 0.002 1.696 ± 0.003 1.696 ± 0.003 1.700 ± 0.002 1.696 ± 0.003
q1 (10−2) 9.810 ± 0.071 12.531 ± 0.154 12.486 ± 0.159 12.281 ± 0.118 12.487 ± 0.179
α 5.544 ± 0.001 −0.721 ± 0.001 0.722 ± 0.001 −5.427 ± 0.002 5.562 ± 0.001
ρ⋆ (10−3) 2.64 ± 0.01 2.36 ± 0.01 2.37 ± 0.01 2.38 ± 0.01 2.36 ± 0.01
πE,N · · · −1.42 ± 0.06 1.49 ± 0.07 1.45 ± 0.03 · · ·
πE,E · · · −0.34 ± 0.04 −0.19 ± 0.06 −0.38 ± 0.02 · · ·
ds/dt (yr−1) · · · · · · · · · 0.05 ± 0.01 · · ·
dα/dt (yr−1) · · · · · · · · · −0.04 ± 0.01 · · ·
ξE,N · · · · · · · · · · · · −2.18 ± 0.03
ξE,E · · · · · · · · · · · · 0.19 ± 0.11
ψ (deg) · · · · · · · · · · · · 247.8 ± 2.0
ℓ (deg) · · · · · · · · · · · · 10.3 ± 1.9

Notes. HJD′ = HJD−2,450,000. We note that the lensing parameters t0 and u0 are measured with respect to the center of the caustic
located on the planet side.

in Figure 1. We find that the improvement is ∆χ2 ∼ 752
compared to the standard binary-lens model. Second, when
we additionally consider the lens orbital effect, on the other
hand, the improvement of the fit ∆χ2 ∼ 1 is meager. Finally,
we find that considering the xallarap effect yields solutions
as good as the parallax solution for source orbital periods
P > 0.6 yr. This is expected because it is known that xallarap
effects can mimic parallax effects (Smith et al. 2003; Dong
et al. 2009). However, the xallarap solutions result in masses of
the source companion bigger than 3 M⊙. This contradicts the
upper limit set by the observed blended light unless the source
companion is a black hole and thus we exclude the xallarap
interpretation. Therefore, we conclude that the dominant effect
for the long-term deviation is the parallax effect. Finally, since
the source lies very near the ecliptic, it is subject to the “ecliptic
degeneracy,” which has almost identical parameters except
(u0,α,πE,N ) → −(u0,α,πE,N ) (Skowron et al. 2011).

In Figure 1, we present the best-fit model (parallax model in
Table 2) curve which is overplotted on the observed light curve.
In Figure 2, we also present the geometry of the lens system for
the best-fit solution. It is found that the lens consists of binary
components with a projected separation bigger than the Einstein
radius corresponding to the total mass of the binary. For such
a binary lens, there exist two sets of four-cusp caustics, where
one small set is located close to the heavier lens component
(primary) and the other bigger set is located toward the lower-
mass lens component (companion). The event was produced by
the source trajectory passing the tips of the caustic located on
the companion side. The strong peaks at HJD ∼ 2,456,537.5
and 2,456,542.5 were produced at the moments of the source
crossings over the caustic tips, while the extended weak bump
centered at HJD ∼ 2,456,065 was produced as the source passed
through the magnification zone of the primary lens. Despite the
relatively short time scale tE ∼ 26.5 days of the event, a clear
detection of the parallax effect was possible due to a combination
of the large value of the lens parallax and the good coverage of
the extended bump that continued for almost two months after
the main peaks.

Detecting the parallax effect is important for the deter-
minations of the physical lens parameters because the lens

Figure 2. Geometry of the lens system. The closed figures composed of concave
curves represent the caustic and the line with an arrow is the source trajectory.
M1 and M2 represent the binary lens components, where M1 is the heavier one.
Grayscale represents the lensing magnification where the brighter tone denotes
higher magnification. All lengths are scaled by the Einstein radius corresponding
to the total mass of the binary lens.

parallax πE is related to the mass and the distance to the lens by
Mtot = θE/(κπE) and DL = AU/(πEθE +πS), respectively. Here
κ = 4G/(c2AU), πS = AU/DS is the parallax of the source star,
and DS is the distance to the source star. The source is in the
Galactic bulge and thus its distance is known. Considering the
mass distribution of the Galactic bulge and the projected source
location, we estimate that DS = 7.60 kpc, corresponding to
πS = 0.132 mas.

For the full characterization of the physical parameters, it is
necessary to additionally determine the Einstein radius, which
is given by θE = θ∗/ρ∗. The normalized source radius ρ∗ is
measured by analyzing the caustic-crossing parts of the light
curve that are affected by finite-source effects. The angular
source radius θ∗ is estimated from the source type that is
determined based on its de-reddened color and brightness.
For this we first calibrate the color and brightness by using
the centroid of bulge giant clump as a reference (Yoo et al.
2004), for which the de-reddened brightness I0,c = 14.45
at the Galactocentric distance (Nataf et al. 2013) and color
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Major image caustic for s > 1 
OGLE-2012-BLG-0358 example (Han et al. 2014) 

greyscale magnification map 

“fold” caustic 

cusp 



Fold Caustic 

•  2 additional images 
are highly magnified 
with roughly equal 
magnification inside 
caustic 

•  images disappear 
outside caustic 

•  Magnification scales 
as: 

A∝Δu⊥
−1/2Θ(Δu⊥ )

(Gaudi & Petters 2002)  

source position; thus, the observable is

!hclðuÞ ¼ hclðuÞ $ u : ð10Þ

Also, while the angular variables we will be working with
will be in units of hE, the astrometric observables are in
physical units, such as arcseconds. To convert to observable
quantities, all angular quantities must be multiplied by hE.
For example, the observable centroid shift is given by
!ucl % "E!hcl.

2.1.2. LensingMap near Folds

We now derive the generic behavior of the photometric
and astrometric properties of gravitational lensing near
folds. We will present our derivations in some detail, in
order to document the approximations and simplifying
assumptions that are implicit in the final analytic expres-
sions. In Figure 1, we provide an illustrative example of the
basic properties of lensing near a fold. We will refer to this
figure repeatedly during the course of the derivations.

Suppose that the lensing map # sends the origin to itself
(which can always be accomplished by appropriate transla-
tions) and that a fold caustic curve passes through the ori-
gin. By Taylor expanding the gravitational potential  
about the origin, one can find an orthogonal change of coor-
dinates that is the same in the lens and light source planes
such that the lensing map # can be approximated by the fol-
lowing mapping in a neighborhood of the origin (Petters et
al. 2001, pp. 341–353; Schneider et al. 1992, p. 187):

u1 ¼ a"1 þ
b

2
"22 þ c"1"2 ;

u2 ¼
c

2
"21 þ b"1"2 þ

d

2
"22 ; ð11Þ

where (h1, h2) and (u1, u2) denote the respective coordinates
in the lens and light source planes and

a ¼ 1$  11ð0Þ 6¼ 0 ; b ¼ $ 122ð0Þ ;
c ¼ $ 112ð0Þ ; d ¼ $ 222ð0Þ 6¼ 0 : ð12Þ

Here the subscripts refer to the partial derivatives of  with
respect to the original global Cartesian coordinates of the
lensing map. For the example in Figure 1, we have adopted
a ¼ 5, b ¼ 1, and c ¼ $d ¼ $0:5.

The Jacobian matrix of equation (11) is

A ¼
aþ c"2 c"1 þ b"2

c"1 þ b"2 b"1 þ d"2

!
: ð13Þ

The critical curve is given by

J % detA ¼ ðaþ c"2Þðb"1 þ d"2Þ $ ðc"1 þ b"2Þ2 ¼ 0 : ð14Þ

The tangent line to the critical curve at the origin is given by

0 ¼ h x

D

Jð0Þ ¼ ab"1 þ ad"2 ; ð15Þ

that is,

"2 ¼ $ b

d
"1 ð16Þ

since a 6¼ 0 and d 6¼ 0. Substituting "2 ¼ $b"1=d into equa-

tion (11) yields

u1 ¼ a"1 þ
b

d2

1

2
b2 $ cd

" #
"21 ’ a"1 ;

u2 ¼
1

2d
ðcd $ b2Þ"21 : ð17Þ

Note that in the expression for u1, the term h1 dominates "21
near the origin. Inserting "1 ¼ u1=a into u2 above, we see
that the tangent line at the origin of the critical curve is
mapped into a parabola (Schneider et al. 1992; Fluke &

Fig. 1.—Illustration of the basic properties of astrometric and photo-
metric microlensing near folds. (a) Filled circles represent the source at vari-
ous times. The solid line is the fold. The source crosses the caustic at uc. (b)
The elongated shapes are the images corresponding to the source at the
positions in (a). The point hf, c is the image of uc and is where the two extra
images appear. The third image on the nearly horizontal trajectory repre-
sents the centroid of all images unassociated with the fold. (c) The magnifi-
cation as a function of time for a point source. The solid line is the total
magnification ltot, the dotted line is the magnification of all images unasso-
ciated with the caustic l0, and the dashed line is the magnification lf of the
two images created in the fold crossing. (d ) Same as (c), except for a finite
uniform source. The dot-dashed line shows the total magnification for a
source size that is 2 times larger. (e) The hcl, 1-component of the centroid
shift as a function of time. The dotted line is for a point-source and the solid
line for a finite uniform-source size. The dot-dashed line is for a source size
that is 2 times larger. ( f ) The hcl, 2-component of the centroid shift. (g) The
path of the centroid of light of all the images, hcl. Line types are as in (e)
and ( f ).

No. 2, 2002 GRAVITATIONAL MICROLENSING NEAR CAUSTICS. I. 973

point source 

finite source 



Cusp of Caustic Curve 
•  Image 1 is continuous 

across the caustic 
•  Images 2 & 3 are 

divergent as the source 
approaches the caustic. 

•  “Lobe” of high 
magnification just outside 
cusp due to image 1 

(Gaudi & Petters 2002)  

image 1 
magnification 

Image 2 
magnification 

Image 3 
magnification 

total 
magnification 



Binary Lens Caustic Curve Morphology 

•  3 different configurations 
with 1, 2, or 3 caustic 
curves. 

•  Close configuration – 3 
separated caustic curves 
(2 are mirror images) 
–  4, 3, 3 cusps 

•  Intermediate/resonant 
configuration - 1 caustic 
–  6 cusps 

•  Wide configuration - 2 
caustics. 
–  4 cusps each 



s = 2 



s = 2-1/2 



Complicated Caustics with > 2 Lenses 
– 19 –

Fig. 2.— Four point masses are at x1,3 = ±0.8 and x2,4 = ±0.5i. The caustic curve consists

of three caustic loops: (q, m) = (3, 12), (1, 3), (1, 3). The arrows show the orientation of the
caustic loops (dϕ > 0). D0 is the lowest degree domain where the number of images is
5, and the domain D1 generates 7 images. D0 −→ D1 depicts the direction in which the

number of images increases by two in relation to the orientation of the caustic loop. All the
caustic loops wind around in the same direction – counterclockwise. Crossing through an

intersection point changes the degree of caustic domain by two and the number of images
by four. In this lens configuration, there are no intersection ponts where more two curves

intersect. A point source in D5 generates 15 images.

triple lens with 4, 6, 8 or 10 images 
n + 1 to 5n - 5 
(Rhie 1997) 

quadruple lens with 5, 7, 9, 11, 13 or 15 
images  

n + 1 to 5n - 5 
Rhie (2003) 

Caustic curves are nested and self-intersecting  
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Relative Magnification Patterns for 
Planetary Mass Ratios 

Planetary magnification pattern divided by single lens pattern 



Major Image Caustic 

OGLE-2012-BLG-0358 example (Han et al. 2014) 

Mostly positive perturbation with slight demagnification outside 
caustics, away from cusps 
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Table 2
Lensing Parameters

Parameters Model

Standard Parallax (u0 > 0) Parallax (u0 < 0) Orbit + Parallax Xallarap (P = 1 yr)

χ2/dof 2347.81/1592 1598.22/1590 1596.24/1590 1595.17/1588 1601.53/1588
t0 (HJD′) 6040.24 ± 0.01 6040.33 ± 0.01 6040.33 ± 0.01 6057.49 ± 0.10 6040.33 ± 0.01
u0 0.108 ± 0.001 0.098 ± 0.001 −0.098 ± 0.001 −0.832 ± 0.002 0.098 ± 0.001
tE (days) 24.38 ± 0.07 26.47 ± 0.11 26.46 ± 0.11 25.64 ± 0.08 26.46 ± 0.12
s1 1.687 ± 0.002 1.696 ± 0.003 1.696 ± 0.003 1.700 ± 0.002 1.696 ± 0.003
q1 (10−2) 9.810 ± 0.071 12.531 ± 0.154 12.486 ± 0.159 12.281 ± 0.118 12.487 ± 0.179
α 5.544 ± 0.001 −0.721 ± 0.001 0.722 ± 0.001 −5.427 ± 0.002 5.562 ± 0.001
ρ⋆ (10−3) 2.64 ± 0.01 2.36 ± 0.01 2.37 ± 0.01 2.38 ± 0.01 2.36 ± 0.01
πE,N · · · −1.42 ± 0.06 1.49 ± 0.07 1.45 ± 0.03 · · ·
πE,E · · · −0.34 ± 0.04 −0.19 ± 0.06 −0.38 ± 0.02 · · ·
ds/dt (yr−1) · · · · · · · · · 0.05 ± 0.01 · · ·
dα/dt (yr−1) · · · · · · · · · −0.04 ± 0.01 · · ·
ξE,N · · · · · · · · · · · · −2.18 ± 0.03
ξE,E · · · · · · · · · · · · 0.19 ± 0.11
ψ (deg) · · · · · · · · · · · · 247.8 ± 2.0
ℓ (deg) · · · · · · · · · · · · 10.3 ± 1.9

Notes. HJD′ = HJD−2,450,000. We note that the lensing parameters t0 and u0 are measured with respect to the center of the caustic
located on the planet side.

in Figure 1. We find that the improvement is ∆χ2 ∼ 752
compared to the standard binary-lens model. Second, when
we additionally consider the lens orbital effect, on the other
hand, the improvement of the fit ∆χ2 ∼ 1 is meager. Finally,
we find that considering the xallarap effect yields solutions
as good as the parallax solution for source orbital periods
P > 0.6 yr. This is expected because it is known that xallarap
effects can mimic parallax effects (Smith et al. 2003; Dong
et al. 2009). However, the xallarap solutions result in masses of
the source companion bigger than 3 M⊙. This contradicts the
upper limit set by the observed blended light unless the source
companion is a black hole and thus we exclude the xallarap
interpretation. Therefore, we conclude that the dominant effect
for the long-term deviation is the parallax effect. Finally, since
the source lies very near the ecliptic, it is subject to the “ecliptic
degeneracy,” which has almost identical parameters except
(u0,α,πE,N ) → −(u0,α,πE,N ) (Skowron et al. 2011).

In Figure 1, we present the best-fit model (parallax model in
Table 2) curve which is overplotted on the observed light curve.
In Figure 2, we also present the geometry of the lens system for
the best-fit solution. It is found that the lens consists of binary
components with a projected separation bigger than the Einstein
radius corresponding to the total mass of the binary. For such
a binary lens, there exist two sets of four-cusp caustics, where
one small set is located close to the heavier lens component
(primary) and the other bigger set is located toward the lower-
mass lens component (companion). The event was produced by
the source trajectory passing the tips of the caustic located on
the companion side. The strong peaks at HJD ∼ 2,456,537.5
and 2,456,542.5 were produced at the moments of the source
crossings over the caustic tips, while the extended weak bump
centered at HJD ∼ 2,456,065 was produced as the source passed
through the magnification zone of the primary lens. Despite the
relatively short time scale tE ∼ 26.5 days of the event, a clear
detection of the parallax effect was possible due to a combination
of the large value of the lens parallax and the good coverage of
the extended bump that continued for almost two months after
the main peaks.

Detecting the parallax effect is important for the deter-
minations of the physical lens parameters because the lens

Figure 2. Geometry of the lens system. The closed figures composed of concave
curves represent the caustic and the line with an arrow is the source trajectory.
M1 and M2 represent the binary lens components, where M1 is the heavier one.
Grayscale represents the lensing magnification where the brighter tone denotes
higher magnification. All lengths are scaled by the Einstein radius corresponding
to the total mass of the binary lens.

parallax πE is related to the mass and the distance to the lens by
Mtot = θE/(κπE) and DL = AU/(πEθE +πS), respectively. Here
κ = 4G/(c2AU), πS = AU/DS is the parallax of the source star,
and DS is the distance to the source star. The source is in the
Galactic bulge and thus its distance is known. Considering the
mass distribution of the Galactic bulge and the projected source
location, we estimate that DS = 7.60 kpc, corresponding to
πS = 0.132 mas.

For the full characterization of the physical parameters, it is
necessary to additionally determine the Einstein radius, which
is given by θE = θ∗/ρ∗. The normalized source radius ρ∗ is
measured by analyzing the caustic-crossing parts of the light
curve that are affected by finite-source effects. The angular
source radius θ∗ is estimated from the source type that is
determined based on its de-reddened color and brightness.
For this we first calibrate the color and brightness by using
the centroid of bulge giant clump as a reference (Yoo et al.
2004), for which the de-reddened brightness I0,c = 14.45
at the Galactocentric distance (Nataf et al. 2013) and color
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Minor Image Caustic 

MOA-2009-BLG-266Lb  
example 
10 M⊕ Planet 

For mass ratio q << 1, 
triangular caustics come 
together 
 
Large demagnification 
signal between two  
triangular caustics, 
where minor image  
is largely destroyed 
 
With spatial averaging, 
demagnification cancels 
magnification due to 
caustics  



MOA-2009-BLG-266Lb – 10 M⊕ Planet 

Cold,  
“failed Jupiter” 

0.6 mag deficit 

 

mp =10.4 ±1.7M⊕

M* = 0.56 ± 0.09M⊙

a = 3.2−1.5
+1.9  AU

DL = 3.0 ± 0.3 kpc



Finite Source Effects 

•  If planetary Einstein Ring < source star disk: planetary microlensing effect is 
washed out (Bennett & Rhie 1996) 

•  For a typical bulge giant source star, the limiting mass is ~10 M⊕ 
•  For a bulge, solar type main sequence star, the limiting mass is ~ 0.1 M⊕ 
•  Main sequence stars can only be resolved at high magnification from the ground!  

planet signal is washed out for 
giant source stars at s < 1 

s s 

planet signal is smoothed for 
giant source stars at s > 1 



Magnification Sampled Along Source Path 

Deviation from single-lens is largely determined by 
“caustics”. Source plane plot 

Planetary caustic 
Lower magnification 
Larger area 

Central caustic 
High magnification 

Host star (lens) 

Planet (lens) 



Caustic Crossing Signals Are Not Equal 

Exterior caustic crossings, 
A and D are weak; interior 
(back side) caustic 
crossings B and C are 
strong. 

MOA-2009-BLG-319 
Miyake et al. (2011) 
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Figure 1. Light curve of planetary microlensing event MOA-2009-BLG-319. The top panel shows the data points and the best-fit model light curve with finite source
and limb-darkening effects. The three lower panels show close-up views of the four caustic crossing light curve regions and the residuals from the best-fit light curve.
The photometric measurements from MOA, B&C, Auckland, Bronberg, CAO, CTIO, Farm Cove, and LOAO are plotted as filled dots with colors indicated by the
legend in the top panel. The other data sets are plotted with open circles. The data sets of µFUN Bronberg and SSO have been averaged into 0.01 day bins, and the
RoboNet FTN and FTS data sets are shown in 0.005 day bins, for clarity.

Vintage Lane Observatory (New Zealand) 0.41 m unfiltered,
µFUN Wise (Israel) 0.46 m unfiltered, µFUN Palomar (USA)
1.5 m I band, RoboNet Faulkes Telescope North (FTN, Hawaii)
2.0 m SDSS-I band, RoboNet Faulkes Telescope South (FTS,
Australia) 2.0 m SDSS-I band, RoboNet Liverpool Telescope
(La Palma) 2.0 m SDSS-I band, MiNDSTEp Danish (La
Silla) 1.54 m I band, PLANET Canopus (Australia) 1.0 m
I band, PLANET SAAO (South Africa) 1.0 m I band, and
IRSF (South Africa) 1.4 m J, H, and KS bands. This is more
follow-up telescopes than have been used for previous planetary
microlensing discoveries.

The light curve for this event had four distinct caustic cross-
ing features, which were all observed with good-to-excellent
sampling. The first is a weak caustic entry at HJD′ ∼ 5006.05,
which is observed by MOA. The second is a caustic exit at
magnification A ∼ 60 at HJD′ ∼ 5006.6. This region of the
light curve is covered by the CTIO, Danish, Liverpool, and
Wise telescopes. The next light curve feature is a strong caustic
entry, which produced the light curve peak at Amax ∼ 205, at
HJD′ ∼ 5006.96. The final caustic exit occurs shortly thereafter
at HJD′ ∼ 5007.0 at a magnification of A ∼ 180. This main
peak covering the third and fourth caustic crossing has excellent
coverage, observed by 16 telescopes.

The images were reduced using several different photometry
methods. The MOA data sets were reduced by the MOA
Difference Image Analysis (DIA) pipeline (Bond et al. 2001).
The µFUN data sets except the CTIO H band and Bronberg
were reduced by the MOA DIA pipeline and pySIS version

3.0 (Albrow et al. 2009), which is based on the numerical
kernel method invented by Bramich (2008). The CTIO H
band and Bronberg data sets were reduced using the OSU
DoPHOT pipeline. The Danish data were reduced by the DIAPL
image subtraction software (Wozniak 2000). The RoboNet and
PLANET data sets were reduced by pySIS version 3.0. The
IRSF data set was reduced by the DoPHOT pipeline. The error
bars for the data points are re-normalized so that χ2 per degree
of freedom for the best-fit model is nearly one.

All of these data sets are used for modeling except for the
CTIO V and H bands, the Canopus and SAAO I band, and the
IRSF J, H, and KS bands. The CTIO V band, the Canopus and
SAAO I band, and IRSF J-, H-, and KS-band data sets do not
have many observations and do not cover the planetary deviation
region of the light curve. The CTIO H-band data were not used
in the modeling because of a cyclic pattern caused by intrapixel
sensitivity variations and image dithering. For our modeling of
microlensing parallax effects, we have used a binned data set
in order to speed up the modeling calculations. Note that we
checked that an analysis with unbinned data gives the same
results.

3. MODELING

Inspection of Figure 1 indicates that the event exhibits a
number of caustic crossings, so we expect that this event,
like most planetary microlensing events, will exhibit sig-
nificant finite source effects. The first step in modeling is
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Table 1
Limb-darkening Coefficients for the Source Star with Effective Temperature
Teff = 5500 K, Surface Gravity log g = 4.5, and Metallicity log[M/H] = 0.0

(Claret 2000)

Filter Color V R I J H K

c 0.3866 0.2556 0.1517 −0.0234 −0.2154 −0.1606
d 0.4303 0.5027 0.5281 0.6021 0.7695 0.6324

therefore to measure the source color, which then enables us to
determine the limb-darkening parameters for the various light
curves.

3.1. Source Color

Once a microlensing model is found, the dereddened source
color and magnitude [I, (V − I )]0 can be determined by
comparing the instrumental values of these quantities to those of
the red clump (Yoo et al. 2004). This is described in Section 4.
However, before a good model can be found, the limb-darkening
coefficients must be determined, which requires an estimate of
the source color. This seemingly endless loop can be broken by
making a model-independent measurement of the instrumental
source color from a regression of V-band flux on I-band flux (and
then comparing this value to the instrumental clump color). We
find (V − I )0 = 0.82, as reported in more detail in Section 4.

3.2. Limb Darkening

We adopt a two-parameter square-root law (Claret 2000) for
the surface brightness of the source,

Sλ(ϑ) = Sλ(0)[1 − c(1 − cosϑ) − d(1 −
√

cosϑ)]. (1)

Here, c and d are the limb-darkening coefficients, Sλ(0) is
the central surface brightness of the source, and ϑ is the angle
between the normal to the stellar surface and the line of sight,
i.e., sinϑ = θ/θ∗, where θ is the angular distance from the center
of the source.

Based on the source color estimate of (V − I ) = 0.82, the
source is likely to have a G8 spectral type and an effective
temperature of Teff = 5475 K according to Bessell & Brett
(1988). We use limb-darkening parameters from Claret (2000)
for a source star with effective temperature Teff = 5500 K,
surface gravity log g = 4.5, and metallicity log[M/H] = 0.0 as
presented in Table 1.

3.3. Best-fit Model

We search for the best-fit binary lens model using a variation
of the Markov Chain Monte Carlo (MCMC) algorithm (Verde
et al. 2003) due to Doran & Mueller (2004) and Bennett (2010)
that frequently changes the “jump function” in order to find the
χ2 minimum more quickly. There are three lensing parameters in
common with single lens events, the time of the closest approach
to the center of mass t0, the Einstein crossing time tE, and the
minimum impact parameter u0. Binary lens models require four
additional parameters: the planet–star mass ratio q, the binary
lens separation d, which is projected onto the plane of the sky
and normalized by the angular Einstein radius θE, the angle of
the source trajectory relative to the binary lens axis α, and source
radius relative to the Einstein radius ρ = θ∗/θE. In addition, for
each data set and passband, there are two parameters to describe
the unmagnified source and background fluxes in that band.

We begin by conducting a very broad parameter search.
The parameter search has been conducted by two independent

Figure 2. Caustic is plotted by the solid curve for the MOA-2009-BLG-319
best-fit model, and the dashed line indicates the source star trajectory. The circle
represents the source star size. The source star crosses the caustic curve four
times, with peak magnification of Amax ∼ 205 during the third caustic crossing
at HJD′ ∼ 5006.96.

codes. We perform 300 separate χ2 minimizations with initial
parameters distributed over the ranges −5 < log q < −1,
−3 < log d < 0.3, in order to identify the parameter regimes of
models that could explain the light curve. The initial parameters
with log d > 0.3 were not prepared because of the d ↔ d−1

symmetry. We find that the only models consistent with the
observed light curve have q ∼ 10−4 and d ∼ 1 and that the best-
fit model has q = (3.95±0.02)×10−4, d = 0.97537±0.00007,
and other parameters as listed in Table 2. The projected position
of the planet is pretty close to the Einstein ring, and therefore
d was well constrained. The light curves and caustic of this
event are shown in Figure 1 and Figure 2, respectively, which
resemble Figure 8 in Wambsganss (1997). Here we assumed no
orbital motion of the planet around the host star in our model.
So, the d and α are the average separation and angle during half
a day when the source is crossing the caustics. The changes of
these parameters due to the orbital motion during this period
could be of the same order or slightly larger than the nominal
MCMC error of the average values given above. These changes
do not affect the results in this analysis because they are much
smaller than the uncertainty given in Section 7.

4. SOURCE MAGNITUDE AND COLOR

The dereddened source magnitude and color can be estimated
as follows. We locate the clump in the color–magnitude diagram
(CMD) of stars within 2′ of the source star, shown in Figure 3,
with the following method. The stars, which are I < 17 mag
and (V − I ) > 1.5 mag, were used for the clump estimate.
Among them, the stars within 0.3 mag from the clump centroid
were picked up. Note that the clump in the first turn was
assumed. Then, the mean magnitude of I and mean color
(V − I ) were calculated using the stars within 0.3 mag and
replaced as the new clump centroid. This was iterated until the
clump centroid position is converged. Therefore, we find the
clump as [I, (V − I )]clump = (15.31, 1.91). The best model
source brightness and color are obtained as [I, (V − I )]S =
(19.82, 1.69) from the fits. With a 0.05 mag correction due to
blending by fainter stars in this crowded field (Bennett et al.
2010), this yields

[I, (V − I )]S − [I, (V − I )]clump = (4.51,−0.22). (2)

We adopt the dereddened red clump giant (RCG) magnitude
MI,0,clump = −0.25 and color (V − I )0,clump = 1.04 from
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Two Types of Planetary Signals 

Detectable planetary signals due to image approach to planet (near planetary 
caustic), or at high magnification (near central caustic) - due to distortion of 
circular symmetry 

minor image 
planetary 
caustics 

central 
caustic 

Planetary caustics are 
larger and cause  most 
planetary signals, but 
the central caustics are 
predictable, occurring at 
very high magnification. 
They offer the highest 
efficiency of planet 
detections for fixed 
telescope time. 

Microlensing 
magnification 
map 
 

planet 

The source trajectory is a 
nearly straight line across 
the magnification pattern. 

caustic location: 
sc= d - 1/d < 0 



Two Types of Planetary Signals 

Detectable planetary signals due to image approach to planet (near planetary 
caustic), or at high magnification (near central caustic) - due to distortion of 
circular symmetry 

major image 
planetary 
caustic central 

caustic 

Planetary caustics are 
larger and cause  most 
planetary signals, but 
the central caustics are 
predictable, occurring at 
very high magnification. 
They offer the highest 
efficiency of planet 
detections for fixed 
telescope time. 

Microlensing 
magnification 
map 
 

planet 

The source trajectory is a 
nearly straight line across 
the magnification pattern. 

caustic  
location: 
sc= d - 1/d > 0 



Central or 
Stellar 

Caustics 

q = 3 ×10-3 

q = 10-4 

(Griest & Safizadeh 1998) 

•  d ↔ 1/d symmetry 
•  as d → 1, central caustic 

becomes large & weak 
•  “forward” single cusp is 

weaker than back-side 
cusps 

•  Since planets at any 
location produce a central 
caustic, high magnification 
events have good multi-
planet sensitivity (Gaudi, 
Naber & Sackett 1998) 



Beyond the Point-Source Approximation 
•  Hexadecapole approx. (Pejcha & Heyrovsky 2009, Gould 2008) 

– Uses 13 point “grid” in the source plane 
– Cannot be used during caustic crossings 
– Not general, but fast 
–  Best when combined with more general method 

•  Brute force ray-shooting (i.e. Wambsganss 1997) 
– Can be used for complicated static systems  

•  i.e. many masses or continuous mass distribution 
–  Becomes extremely slow for an orbiting lens system 

•  Stokes or Green’s Theorem (Dominik 1995, 1998; Gould & Gaucherel 
1997; Bozza 2010) 
–  Very fast for uniform source 
–  Competitive for realistic limb darkened sources 
–  not yet implemented for n > 2 lens masses – tracing image boundaries is 

difficult 
•  Direct integration of point-source formula over source plane 

–  Highly inaccurate due to caustic singularities (tried by Griest) 



Beyond the Point-Source Approximation 2 
•  Image Centered Ray-Shooting (Bennett & Rhie 1996; 

Bennett 2010) 
–  First general method for binary lens systems with finite sources 
–  Used to show that microlensing can detect exo-Earths 
–  use point source approximation except when the source is close to 

a caustic or image is close to a caustic curve 
•  Shoot rays from point-source image centers plus any partial 

images where the disk (but not the center of the source) crosses 
a caustic 

–  grids grow until the grid boundary is outside the image  
–  For a high magnification static lens system, we can save the rays 

shot close to the Einstein ring. 
–  Polar coordinate and limb-darkening integration improvement 
– Only (current) practical method for fast orbiting triple lens systems, 

i.e. circumbinary planetary system OGLE-2007-BLG-349L 



Ray-Shooting Grids 
• High magnification 

events are the most 
time consuming to 
calculate due to highly 
elongated images 

• Polar coordinates can 
sample the long image 
axis with < 1/16 of the 
grid points of a 
Cartesian coordinate 
system. 

• High mag events have 
more extreme axis 
ratios, typically 100:1 



High Precision: 
2nd Order Numerical Integration 

Building blocks of 2nd order schemes (Numerical Recipes, Press et al.) 
 
Trapezodial rule: 
 
 
Mid-point rule: 
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Integrating Over Limb-darkened Images 
•  But  

 
•  This ruins the 2nd order 

accuracy of the differencing 
scheme 

•  Of course, we integrate in 
the image plane where the 
stellar profile is distorted, 
but the (1-r)1/2 behavior 
remains near the limb 

•  Bennett (2010) 2nd order 
scheme speeds calculation 
by >10 for high mag events 
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both ʹf  and ʹ́f  diverge at r ∼ 1
for f ∼ (1− r)1/2
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Milne (1921) formula: 



Numerical Integration of Limb-darkened Images 

 trapezoidal rule  

 midpoint rule  

Standard 1-dimensional integration schemes can be built from these 
simple formulae (see e.g. Numerical Recipies by Press et al.) 
Build a scheme of 2nd order or higher accuracy 

– 7 –

2.1. Integration of Limb Darkened Profiles

In order to understand how to write a numerical integration scheme for gravitational lensing
light curves, let us first consider the simpler question of one-dimensional numerical integration.
There has been a lot of work in this field, and there are a number of numerical integration schemes
that can give quite precise results for a small number of integration grid points if the integrand is
smooth. A good discussion of these methods is given in Press et al. (1992), and here I reproduce
the relevant points.

For most numerical integration problems, the key to an e⇥cient evaluation of the integrals,
is to obtain high accuracy with as few evaluations of the integrand function as possible. This is
often accomplished by invoking a higher order integration scheme, which means that the error can
be expected to scale as a high power of the integration grid spacing, h. Of course, high order is
no guarantee of high accuracy. A high order scheme can have a large coe⇥cient in front of the
error term that can render it less accurate than a lower order scheme at a given grid spacing.
Furthermore, in our case, we are considering two dimensional integrals, so correlations between the
numerical errors in di�erent rows of one dimensional integration can have a significant e�ect on
the overall accuracy of the integral. That is, there might be correlations that tend to make the
numerical errors in di�erent rows add coherently, instead of incoherently so that the relative error
would fall as the square root of the number of integration rows. As a result, it is quite di⇥cult
to predict the accuracy of a numerical integration scheme with analytic arguments like the ones
presented in this section. So, as is usually the case with numerical calculations, it will be the
numerical tests of the method that will show which methods are most precise.

The integrands that we are concerned with are not very smooth, so I restrict the discussion
to 2nd order integration schemes. For most numerical integration problems, there are two basic
building blocks for the 2nd order integration schemes, the trapezoidal rule,

⇤ x2

x1

f(x)dx = h

�
1
2
f1 +

1
2
f2

⇥
+ O(h3f ⇥⇥) , (6)

and the mid-point rule, ⇤ x3/2

x1/2

f(x)dx = hf1 + O(h3f ⇥⇥) . (7)

These are both formulae for evaluating integrals over a single grid spacing, h, using values of the
function calculated at integer multiples of the grid spacing. The function values are fi ⇥ f(xi).
The error term O( ) indicates that the true answer di�ers from the estimate by an amount that is
the product of some numerical coe⇥cient times h3 times the value of the second derivative of the
function somewhere in the range of integration.

Now, these building block formulae can be strung together to build extended formulae that
can be used over finite intervals. This yields the extended trapezoidal rule,

⇤ xN

x1

f(x)dx = h

�
1
2
f1 + f2 + f3 + ... + fN�1 +

1
2
fN

⇥
+ O

�
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Building blocks of 1-dimensional 2nd order numerical integration schemes 
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Numerical Integration of Limb-darkened Images 
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                      h1 = x3/2 − xa          hN = xb − xN −1/2

For lensing calculations, we must calculate the grid 
points before we find the boundaries 

modifying the boundary step size would seem to restore 2nd order accuracy 



1-Dimensional Integral of Limb 
Darkened Source 

• Normally, we assume that the integrand is approximated by 
a power law in (x - xL) where xL is the position of the limb 

• But, a limb darkened source is better approximated by a 
power law in 

• Require that the difference scheme is exact for low order 
power law functions in               instead of (x - xL)  

• Standard 2nd order schemes have error terms that scale as 
~ h3/2 and are actually order 1.5 

• A relatively simple scheme works best 
• Formally higher order schemes are sometimes worse 

x − xL

x − xL



An Attempt at a 2nd Order Scheme 
This is formally 2nd order accurate for a “linear” limb darkening profile: 
 
 
 
 
 
 
 
 
but the b gets very large for δ ~0, so this formula is applied only  
for b ≥ bc  where bc~ 0.15 has been determined to be optimal empirically  
 
This method does turn out to be 2nd order in some cases, but in other 
cases σ ~ h3/2, but precision is improved by a factor of ~10 
 
Computational overhead of finding the boundary is a factor of 1.5-2 
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2
3
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2
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2nd Order Integration Scheme for Limb 
Darkened Sources 

• A relatively simple scheme cancels 

    where 
 
 
• But b can get very large when δ → 0 
• Small δ values can lead to large numerical errors 

– presumably due to large coefficients for higher order error terms 
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by a factor of about two in the radial direction, so they have a very large ratio of boundary to
area. Thus, errors at the boundary make a large contribution to the total error in the integral. The
caustic crossing features, on the other hand, are less singular than the limb darkening profile, and
they also are also (usually) much shorter than the entire extent of the limb in the image plane.

While eq. 10 describes the limb darkening in the source plane, the integrals are carried out in
the image plane where the source brightness profile is distorted by the gravitational lens. However,
the lowest order behavior near the limb is generically described by I ⇤ C + D

⌅
x where C and D

are constants and x is the distance from the limb of the distorted image. The only case where the⌅
x behavior is removed by the lens distortion is when the stellar limb just touches the interior of

a caustic. However, this will generally only occur at a single point of contact between the caustic
and the limb, so the

⌅
x behavior is generic.

The two building block formulae, eqs. 6 and 7, are derived by requiring that they be exact
for low order power laws (as in a power series expansion of f), and in the second order case, the
formulae are exact for f = const. and f = x. This fails for limb darkened profiles, because these
cannot be expressed as a power series in x � xL, where xL is the location of the limb. Instead,
the distorted limb darkening profile can be expressed as a power series in

⌅
x� xL. We can still

demand that the our integration formula is exact for the two leading orders in the power series
expansion of the integrand. In eqs. 6 and 7, the first term in the power series that does not vanish
scales as h3 (under the assumption that f can be expanded in a power series in x). However, with
half-integer powers of h in addition to integer powers, there are more terms in the power series
expansion. As a result, the first non-vanishing term in eqs. 6 and 7 scales as h3/2 instead of h3

when f(x) has a limb darkened form like eq. 10. In order to cancel this h3/2 error term, we will
demand that our integration formula be exact for f = const. and f =

⌅
x� xL, where xL is the

location of the limb. This requirements lead us to replace eq. 7 by
⇤ x3/2

xL

f(x)dx = h

�
1
2

+ �

⇥
[(1� b)fL + bf1] , (11)

where

b =
2
3

⌅
� + 1

2

�
, (12)

and � = (x1�xL)/h. The � in the numerator of eq. 12 is somewhat worrisome because � can become
very small if the limb happens to come very close to a grid point. Conceivably, this could lead to
a situation, where the error grows very large, even if it is formally of high order. Therefore, we
introduce another parameter, �c, such that eq. 11 is only invoked for � ⇥ �c. When � < �c, we invoke
a standard “second order” method that will be converted to 1.5 order by the singular derivative
at the limb. Any combination of cfL + df1 will satisfy this criteria as long as c + d = 1/2 + �.
Experimentation with di�erent c and d values indicates that c = �i/3 and d = 2�i/3+1/2 is a good
choice, so it is used below. We will investigate the e�ect of this �c parameter in Section 3. We can
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Implement a Cut-Off 
•  For δ < δc use a lower order integration scheme 

  with coefficients given by 
 
 
 
 
 
 
•  The cut-off means that the differencing method is formally only order 

1.5 accurate, but empirically, this works best. 
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now write an extended numerical integration rule to take the place of eq. 9,
⇤ xL2

xL1

f(x)dx = h (A1fL1 + B1f1 + f2 + ... + fN�1 + B2fN + A2fL2) , (13)

where L1 and L2 refer to the the stellar limbs at each limit of the x coordinate integral, and the
Ai and Bi coe⇥cients are given by

Ai =
�

1
2

+ �i

⇥
(1� bi) �(�i � �c) +

�i

3
�(�c � �i) ,

Bi =
�

1
2

+ �i

⇥
bi�(�i � �c) +

�
2
3
� +

1
2

⇥
�(�c � �i) , (14)

where � is the Heavyside step function and �i and bi refer to � and b for the each of the two stellar
limbs (at i = 1 , 2) on the image being integrated.

If we set �c = 0, then eq. 13 is accurate to second order, even though eq. 11 has a non-vanishing
h2 error term. The reason for this is because we only invoke eq. 13 at the limbs, and we use eq. 7
for all the interior points. Since the limb darkened profile does have a power series expansion in x

away from the limb, the error for eq. 7 does scale as h3 in the interior (except on a critical curve,
where it has a h5/2 contribution). Thus, it is only the h3 error terms that get a 1/h contribution
from the sum. So, formally, eq. 13 is second order accurate (with �c = 0), while eqs. 8 and 9 are
only accurate to the three halves order for a limb darkened source. Of course, with �c > 0, eq. 13
also gains an error term that scales as h3/2, but as we shall see, in some cases, even with �c > 0,
eq. 13 can yield second order accurate results. In all cases, eq. 13 with �c ⇥ 0.15 is substantially
more accurate than the first order or �c = 1.0 calculations.

It is possible to derive integration formulae that are more complicated than eqs 13 and 14 that
are formally 2nd order accurate without the problem of any of the coe⇥cients growing unreasonably
large for any position of the boundary with respect to the grid spacing. However, experimentation
with a number of such integration formulae has not found any such integration scheme that gives
results as accurate as the scheme represented by eqs 13 and 14.

2.2. Two-Dimensional Ray Shooting Integration

In Section 2.1 we developed a one-dimensional numerical integration rule, eq. 13, which is
designed to improve the accuracy of the integration of limb darkened source profiles. But, of
course, we will need to do two dimensional integrals to determine microlensing magnifications. The
integral in the second dimension is not subject to the divergent integrand derivative at the boundary,
because this is removed by the integral in the first direction. (Of course, the limb darkening has
the same behavior in both directions. But the integral in the first direction is roughly proportion
to the length of the row being integrated, and this generally goes to zero at the boundaries of the
integral in the second direction.) But, we still must deal with the arbitrary location of the image
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2nd Dimensional Integration 
•  y – direction 
•  Integrate over rows 
•  Integration over x removes the 
 derivative singularity due to 
 terms 

•  If Fi indicates the integral of the i-th 
row, the formula 

 makes the y – direction integral 2nd 
order accurate 

y − yL
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boundary. I employ the following second order accurate formula for this integration
⇧ y5/2

yL

F (y)dy = h

⇤�
3
8

+ ⇥ +
⇥2

2

⇥
F1 +

�
9
8
� ⇥2

2

⇥
F2

⌅
, (15)

where ⇥ = (y1�yL)/h and F (y) refers to the integral over the x direction, which has a y dependence
that is not made explicit in eq. 13.

With eqs. 13 and 15 to handle the numerical integrations, we can now consider the coordinate
system to use for the integrations. In this context, it is useful to consider the image geometry
for high-magnification microlensing events. Consider a typical high-magnification event with a
magnification of A = 200. If there are no companion planets or stars, then there will be two
lensed images. The major image will have the shape of a circular arc with a magnification of
Amaj = 100.5, and it will be located just outside the Einstein ring. The minor image will be just
inside the Einstein ring on the opposite side of the lens from the major image, and its magnification
will be Amin = 99.5. Each image will be compressed in the radial direction by about a factor of
two, so the images will have the form of long, skinny arcs with a length-to-width ratio of about
200. Thus, the limb darkening profile will vary 200 times more rapidly in the radial direction than
in the angular direction. This strong distortion of the images suggests that a polar coordinate grid
is most appropriate for our problem, and it seems likely that we will require a much larger grid
spacing in the angular direction than in the radial direction. In fact, the 200:1 distortion of the
images for our example would seem to suggest that a 200:1 grid spacing ratio might be appropriate.

However, we must also consider the e�ect of the planetary lenses that are the primary mo-
tivation for observing high-magnification microlensing events. The planetary lenses will distort
the single lens images, and if there are caustic crossings, new images will be produced that will
not follow the Einstein ring as closely as the images that are not significantly influenced by the
planet. So, during the planetary deviations, this image stretching in the angular direction may not
be quite as severe as in our example. However, it is this image stretching in the angular direction
that is responsible for the high magnification of these events, so we should expect that the optimal
integration grid should include some extension in the angular direction.

Following the discussion above, I have arrived at the following two-dimentional integration
strategy. An integration grid is set up in polar coordinates (r,⇤) with a larger grid spacing in the
angular than in the radial direction. In Section 3, we study the e�ects of varying this axis ratio.
The integration is done using using eq. 13 in the radial direction with a fixed value of �c. The
integrand is given by the value of the limb darkening profile at the integration point, times r, to
give the proper polar coordinate area element. However, the integration is done in the image plane,
while the limb darkening is known in the source plane. Thus, we must apply the lens equation,
eq. 1, to determine the appropriate source plane point and the limb darkened surface brightness
that corresponds to the integration grid point in the image plane. The dependence of the light
curve calculation precision on the grid size, the angular vs. radial grid spacing ratio, and on �c is
investigated in Section 3.



Binary Lens vs. Binary Source 

Higher magnification of faint secondary source can resemble a planetary signal. 
Observations of the light curve wings of the secondary bumps can rule out the 
binary source models. 

2438 I. A. Bond et al.

Table 2. Best-fitting parameters for the binary source model.

Parameter value

tE /d 10.55 ± 0.11
t0 / HJD−2450000 7568.761 55 ± 0.000 80
u0 − 0.049 45 ± 0.000 60
d 0.0609 ± 0.0011
ψ 125.◦170 ± 0.015
α 0.001 99 ± 0.000 10
ρ 0.002 04 ± 0.000 10
λ 0.3781 ± 0.0017
χ2

min (19 587 data points) 19 699.7

Figure 4. Close-up of the observed perturbation comparing the best-fitting
binary source model (magenta) with the best-fitting wide planetary model
(green). As before the data points are RMOA (red), VMOA (blue) and OGLE
(black).

The best-fitting parameter values are listed in Table 2. The nega-
tive value of u0 together with the values for d, ψ , and ρ mean that
the secondary lags behind the primary and passes over the lens over
the course of the event. With a flux ratio of ∼0.002, the secondary is
significantly fainter than the primary but is more highly magnified
as expected. In Fig. 4, we show a close-up view of the observed per-
turbation together with the best-fitting binary source model and the
wide planetary microlensing model. Overall, the planetary model
does a better job at reproducing the features of this perturbation. In
particular, the binary source model does not fit the beginning and
end of the perturbation as well as the planetary model. The differ-
ence in the goodness of fit between the two models is &χ2 ≈ 120.
We can compare this to the similar case of OGLE 2005–BLG–390
where a binary source model was excluded in favour of a planetary
model at &χ2 ≈ 46 (Beaulieu et al. 2006).

The parameters of planetary and binary source models considered
here are not nested parameters. Strictly speaking, the difference in
χ2 is not an appropriate measure to compare the two. Following
the approach of Sumi et al. (2016), we compare the models using
Akaike’s Information Criterion AIC = χ2 + nparam and the Bayesian
Information Criterion BIC = χ2 + nparamln (Ndata). These are stan-
dard criteria used to select a preferred model and they penalize for
the number of parameters used. In our data, the planetary model
gives the smaller value for both of these criteria. We find for the dif-
ference between the models: &AIC ≈ 121 and &BIC ≈ 129. Here,
we conclude that the binary source model is excluded in favour of
the planetary models for ob161195.

Figure 5. Magnitudes and colours measured for resolved stars within
2 arcmin of the event ob161195. The measurements plotted in blue are
instrumental magnitudes extracted from the MOA RMOA and VMOA refer-
ence images that have been calibrated to the OGLE-III I and V system. The
data points plotted in black are the V–I and I values taken directly from the
OGLE-III catalogue. The magenta coloured box shows those stars used to
measure the red clump giant centroid shown by the red point. The green
point shows the measured magnitude and colour of the event source star as
derived from the best-fitting wide binary model described in the text.

3.3 Observed source star properties

The source star fluxes are measured as scaling parameters when
determining the best-fitting microlensing magnification profile.
Though sparsely sampled, the MOA VMOA measurements cover
parts of the light curve where the source star is magnified al-
lowing a measurement of the source star flux in this passband.
For the MOA data, we derive an instrumental source star mag-
nitude of RMOA = −8.226 ± 0.001 and an instrumental colour
VMOA − RMOA = 1.457 ± 0.018. The MOA instrumental colour
is in good agreement with the model-independent value presented
in the previous section. Using our instrumental calibration from
Section 3.1, the apparent source star magnitude and colour in the
OGLE-III system is

Isrc = 19.581 ± 0.001

(V − I )|src = 2.113 ± 0.020

From our measurements of the red clump in Section 3.1, the ex-
tinction corrected and dereddened source star magnitude and colour
is

Isrc,0 = 17.819 ± 0.018

(V − I )|src,0 = 0.705 ± 0.022

An OGLE-independent determination of the dereddened colour
based on OGLE-IV photometry yields (V − I)0 = 0.67 ± 0.03. This
is consistent with MOA result. In Fig. 5, we plot a IOGLE-III ver-
sus(V − I)OGLE-III colour–magnitude diagram for MOA and OGLE
measurements of resolved stars together with the above source star
measurements. The position of the source star magnitude and colour
measurements is well below the red clump and sub giant regions.
Main sequence stars could not be resolved in our DOPHOT mea-
surements of the reference images. However, we can compare our
(V − I, I)|src,0 measurement with the colour–magnitude diagram
of main-sequence stars of Holtzman et al. (1998) based on the
HST observations of Baade’s window. After allowing for extinc-
tion and reddening based on the red clump measurements of the
HST data (Bennett et al. 2008), our measurements of the source star

MNRAS 469, 2434–2440 (2017)

OGLE-2005-BLG-390 (Beaulieu et al. 2006)  OGLE-2016-BLG-1195 (Bond et al. (2017) 

1st studied by Gaudi (1998) 



Binary Source Imitates a Planet 
OGLE-2013-BLG-0733 

          binary lens                                               binary source 



Binary Source Imitates a Planet 
OGLE-2013-BLG-0733 

binary lens model requires unusually large source to smooth sharp 
binary features, but it still doesn’t quite fit the data 



Xallarap Confusion 

Triple lens model for MOA-2004-BLG-33, but short period source orbital motion 
fits better (Joe Ling, unpublished). Hint: sharp light curve features in model, but 
not data.  



MOA-2010-BLG-117: An Obvious 
Planet without a Good Binary Model 

Light curve morphology 
indicates a planetary 
minor image caustic 
crossing event, but light 
curve doesn’t fit. 
 
De-magnification trough 
is too shallow. 
 
Fill it in with another lens 
or another source. 



MOA-2010-BLG-117: Circumbinary Model 

Circumbinary is a better fit – better than first attempts at binary source, but the 
cusp motion tracks the source at an implausibly large velocity, 



MOA-2010-BLG-117: Binary Source Model 

Source flux ratio was fixed 
to be consistent in the 
different data sets. 
 
This removed local χ2 
minima and allowed a 
much better solution to be 
found. 
 
Note the different light 
curves in different 
passbands. 



Events Difficult to Detect by Inspection 

Subtle, weak caustic crossing missed by µFUN, OGLE & PLANET for 8 months. 
 
Signal noticed by Nick Rattenbury of MOA, which had no data. 

µFUN, OGLE, 
MOA & PLANET 



Events Difficult to Detect by Inspection (2) 

Like OGLE-2005-BLG-169, MOA-2008-BLG-310 (primarily) crossed the weak 
forward part of the central caustic, but the source radius was also larger than the 
caustic width 
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Fig. 1.— Top: Light curve of MOA-2008-BLG-310 showing data from MOA (green), µFUN
Auckland (orange), µFUN Bronberg (black), µFUN SMARTS I-band (red), MiNDSTEp La

Silla (cyan), and PLANET Canopus (magenta). Also shown is the best fit single-lens model.
The light curve does not look anomalous at first glance. Middle: Residuals to the best-fit

single-lens model. Anomalies are apparent at HJD′ = 4656.34 and HJD′ = 4656.48. The
noticeable offset in the alignment of Bronberg and CTIO data is an effect of independently
fitting fs and fb for each observatory (see Section 3). See Figure 3 for didactic residuals.

Bottom: Residuals to the best-fit planetary model (the wide solution is chosen for this plot,
however the close solution is essentially indistinguishable).
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Fig. 3.— Top: Didactic residuals to the single-lens model. Data points are shown for µFUN
Bronberg (black), µFUN SMARTS (red), and MiNDSTEp La Silla (cyan). The solid lines are

the best-fit wide (green) and close (blue) planetary models. Bottom: The source trajectory
(solid black line) showing the extended source (circle) crossing the caustic created by the

planet at key points in time. The circle radius on the plot is the source radius crossing time,
t∗ = ρtE ∼ 0.055 days. The caustics for the wide and close models are plotted in green and
blue, respectively. The density of the caustic points is proportional to the strength of the

caustic, so that the “solid lines” correspond to stronger magnification while the “dotted lines”
indicate that the caustic is weaker. The two caustic structures are nearly indistinguishable in

regions probed by the source. Several of the anomalous features apparent in the the residual
plot correspond to the limb of the source crossing the caustic. These features are numbered,

and dashed black lines connect them to the corresponding position of the source. Didactic
residuals show the difference between the data and a point-lens model that has the same (t0,
u0, tE, ρ, fs, fb) as the best-fit planetary model.



Most Microlensing Events Have Unresolved  
Source Stars 

•  But at high magnification (say A ≥ 100), they are resolved 
•  Several bright main sequence source stars per arc sec2 .  

CTIO HST 



Events Difficult to Classify by Inspection 

MOA-2008-BLG-379 not identified as planetary for 3 years until a systematic 
analysis of all MOA binary events. High mag event with faint source. Light curve 
is dominated by strong caustic crossing and cusp approach features on the 
“back” side of the central caustic 



Events Difficult to Classify by Inspection 

OGLE-2008-BLG-355 not identified as planetary for 3.5 years until a systematic 
analysis of all MOA binary events. Moderate mag event with an I = 20 source. 
Light curve is dominated by strong caustic crossing and cusp approach features 
on the “back” side of the central caustic 



Planet in Binary: OGLE-2013-BLG-0341 

Very lucky to have planetary caustic 
signal (< 1%), but planetary signal can 
be detected without planetary caustic 
detection. 
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Figure 1: OGLE-2013-BLG-0341 lightcurve. Upper panels: lightcurve features (C through
F), induced by main caustic due to binary, are seen as source passes close to planet host. The

entrance has a sharp break (C) indicating a caustic crossing, while the exit does not (EF), in-
dicating a cusp exit. Lower-left: low amplitude “bump” (A) due to sources passage relatively

far from binary companion to host, ∼ 300 days earlier. Lower-right: “dip” (B) due to planet
“annihilating” one of the the two main images of the source.

13

Figure 2: Geometry of OGLE-2013-BLG-0341 “Wide minus” solution. This includes locations

of the host (M∗), planet (Mp), and companion (Mc), and of the caustics (closed curves of for-
mally infinite magnification) that induce strong perturbations in the lightcurve. Source position
is shown at six key times (ABCDEF) corresponding to lightcurve features in Fig. 1. Middle

panel: Zoom of planetary caustic (left) and central caustic (right) giving rise to “dip” and main
peak seen in Fig. 1. Central caustic and lens positions are shown at two different epochs (“A”

and “E”) separated by ∼ 300 days during which it changed its shape and orientation due to
binary orbital motion as described in Supplements. Upper panel: Further zoom showing source
(yellow) to scale. Blue and red caustics and circles indicate lens geometries at times of “bump”

(A) and main peak (D), respectively. One unit on x-axis corresponds to tE = 33 days in time.
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Figure 3: Full OGLE-2013-BLG-0341 lightcurve (top) and residuals from “Wide minus” model
with (middle) and without (bottom) including the parallax effect. Parallax is strongly detected,
∆χ2 = 730. Silhouetted black and red curves indicate zero and difference between parallax

and no-parallax models, respectively. In contrast to all other crucial lightcurve parameters, the
parallax effect is not directly visible in the lightcurve, but only in the residuals. However, as

explained in Supplements, an experienced modeler can “read off” from these residuals that
πE

>
∼
0.7.
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Close Model has s3/s2 = 5.1 

Have we missed other 
planets in binary systems? 

Undiscovered planets? 



Mystery Event: OGLE-2008-BLG-270 

Likely triple lens system with orbital motion, but best known fit is not a good fit, 
and nearly tangential caustic crossing implies a > 2 Msolar lens star. 
High dimensional model parameter space is difficult to search. 



Double-Planet Event: OGLE-2006-BLG-109 
• 5 distinct planetary 
light curve features 

• OGLE alerted 1st 
feature as potential 
planetary signal 

• High magnification  
• Feature #4 requires 
an additional planet 

• Planetary signals 
visible for 11 days 

• Features #1 & #5 
require the orbital 
motion of the Saturn-
mass planet 

µFUN, OGLE, MOA & PLANET 

OGLE alert 

only multiplanet  
system with  
measured masses 



OGLE-2006-BLG-109 Light Curve Detail 
• OGLE alert on feature 

#1 as a potential 
planetary feature 

•  µFUN (Gaudi) 
obtained a model 
approximately 
predicting features #3 
& #5 prior to the peak 

• But feature #4 was not 
predicted - because it 
is due to the Jupiter - 
not the Saturn 

Gaudi et al (2008) 
Bennett et al (2010) 



OGLE-2006-BLG-109 Light Curve Features 
•  The basic 2-planet 

nature of the event 
was identified 
during the event, 

• But the final model 
required inclusion 
of orbital motion, 
microlensing 
parallax and 
computational 
improvements (by 
Bennett). 



OGLE-2006-BLG-109Lb,c Caustics  
Curved source trajectory due 

to Earth’s orbital motion 

Feature 
due to 
Jupiter 

Planetary orbit changes the caustic 
curve - plotted at 3-day intervals 



OGLE-2006-BLG-109 Source Star 

The model indicates 
that the source is 
much fainter than 
the apparent star at  
the position of the 
source. Could the 
brighter star be the 
lens star? 

source from model 

Apparent source  
In image 



OGLE-2006-BLG-109Lb,c Host Star  

•  OGLE images show that the source is offset from the bright star by 350 mas 
•  B. Macintosh: Keck AO images resolve lens+source stars from the brighter star. 
•  But, source+lens blend is 6× brighter than the source (from CTIO H-band light 

curve), so the lens star is 5× brighter than source. 
–  H-band observations of the light curve are critical because the lens and source and not 

resolved 
•  Planet host (lens) star magnitude H ≈ 17.17 

–  JHK observations will help to constrain the extinction toward the lens star 



First Multiplanet System with Measured Masses 

•  Apply lens brightness constraint: HL≈ 17.17.  
•  Correcting for extinction: HL0= 16.93 ± 0.25 

–  Extinction correction is based on HL-KL color 
–  Error bar includes both extinction and photometric uncertainties 

•  Lens system distance: DL= 1.54 ± 0.13 kpc 

  Host star mass: ML = 0.52−0.07
+0.18M⊙  from light curve model.

  

Host star mass: ML = 0.51± 0.05M⊙  from light curve and 
lens H-magnitude.
Other parameter values: 
•  “Jupiter” mass:               mb= 0.73 ± 0.06 MJup  

 semi-major axis:   
•  “Saturn” mass:           mc= 0.27 ± 0.03 MJup= 0.90 

MSat    semi-major axis:   
•  “Saturn” orbital velocity           vt = 9.5 ± 0.5 km/sec                      

 eccentricity                   
 inclination           i = 63 ± 6°         

ab = 2.3 ± 0.5AU

ac = 4.5−1.0
+2.2 AU

€ 

ε = 0.15−0.10
+0.17



•  Full calculation using Markov 
chains run at fixed acceleration. 

•  Include only Hill-stable orbits 
•  results: 

 

M LA = 0.51± 0.05M ⊙

M Lc = 0.27 ± 0.03M J

M Lb = 0.73 ± 0.07M J

a Lc = 4.5 −1.0
+2.2 AU

a Lb = 2.3 ± 0.5AU
inclination = 64 −7

+4  degrees
ε = 0.15 −0.10

+0.17

Full Orbit Determination for 
OGLE-2006-BLG-109Lc 

•  RV follow-up w/ 40m telescope 
– K = 19 m/sec   (H = 17.2) 

 



Future Doppler Radial Velocity Confirmation 

A high throughput, high resolution spectrograph on a 22-40m aperture telescope 
can measure the 19 m/s RV signal 

E-ELT – 42m aperture 
1st light in 2017 

TMT – 30m aperture 
1st light in 2017 

GMT - 22m aperture 
1st light in 2017 




