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Galaxy Evolution and Gas Circulation
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Milky Way galaxy

Galactic Chemical Evolution

@Using STELLAB



Galactic Chemical Evolution

Tolstoy et al. (2009)
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Côté, Ritter, O’Shea, et al. (2016)

Connecting the Smallest and the Largest Scales

see also Côté, Ritter, Herwig, et al. (2017)

Great opportunity to make progress in multiple fields of research simultaneously 
and build a coherent picture of how stars and galaxies evolve in the universe

.. but comes with the difficult challenge of dealing with uncertainties at all scales.

        What about neutron stars and black holes?         
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Oxygen, Massive Stars, and Black Holes

All massive stars between
8 and 40 Msun explode

Only massive stars between

8 and 20 Msun explode

@Using OMEGA and Kobayashi et al. (2006) massive star yields
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Massive Star and Supernova Models

?

This changes our vision 
of how O and Fe are 

produced

Heger & Woosley (2010)
see also Heger, Fryer, Woosley, et al. (2003)

To test this theory, we need to know the relation 
between the initial mass and the final 

(remnant) mass of massive stars.
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Neutron Star and Black Hole Mass Function

Belczynski, Wiktorowicz, Fryer, et al. (2012)

Observation of 
binary systems

Prescription used by 
the NuGrid 

collaboration
(Pignatari et al. 2016; 
C. Ritter et al. in prep.)

~ 80 neutron stars

~ 20 black holes



Neutron Star and Black Hole Mass with Microlensing

J. C. Yee & C. B. Henderson (Themes document)
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Neutron star and black hole mass distributions
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WFIRST and Galactic Chemical Evolution

Côté, Ritter, O’Shea et al. (2016)

Neutron star and black hole mass distributionsUncertainties in the remnant mass   
make stellar models very uncertain (Fe yields).    
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Origin of r-process elements — neutron star mergers?
Using Europium (Eu) as a tracer

Image built from Tauris, Kramer, Freire et al. (2017)

Ti
m

e

Fe

Fe

Eu

[E
u/

Fe
]

[Fe/H] [Fe/H]

Matteucci, Romano, Arcones, et al. (2014)
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3 simulations with 3 different delay times
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Enrichment Timing and Evolution of [Fe/H]

Ishimaru, Wanajo & Prantzos (2015)
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How about slowing down the evolution of [Fe/H]?

Bigger gas reservoirs reduce [Fe/H]
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Enrichment Timing and Evolution of [Fe/H]

Ishimaru, Wanajo & Prantzos (2015)

Keres et al. (2005)

Galactic inflows

H

H H

Galactic outflows

M82 (Hubble, Chandra, Spitzer)

Fe

Fe
Fe

Fe



Physics Behind the [Eu/Fe]-[Fe/H] Plot
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Gas concentration (H)

Gas circulation [Fe/H]

Stellar models (Fe)

K. Belczynski’s models

Merger rates of compact binary objects (Eu)

Relation between initial and remnant mass
(neutron stars and black holes)



Breaking the Degeneracy

We need multiple constraints to break the degeneracy.
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Neutron star and black hole mass distributions
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Conclusions

Understanding the evolution of stars and galaxies using chemical elements 
is a degenerate process, and the stellar models are the foundation.

WFIRST and microlensing can constrain the mass function 
of neutron stars and black holes.

The field of chemical evolution allows to create a more coherent 
picture of how stars and galaxies evolve and interact. 

Any additional constraint help in getting closer to this big picture.



Open-Source Chemical Evolution Pipeline

•  STELLAB - STELLar ABundances, observational data plotting tool

Open-source codes http://nugrid.github.io/NuPyCEE/

Côté, Ritter, Herwig, et al. (2017)

•  SYGMA - Stellar Yields for Galactic Modeling Applications (C. Ritter et al. 2017, in prep.)

•  OMEGA - One-zone Model for the Evolution of GAlaxies (Côté, O’Shea, Ritter, et al. 2017)

•  GAMMA - Galaxy Assembly with Merger-trees for Modeling Abundances (Côté et al. in prep.)


