## Formation of Free Floating Planets

Elisa Quintana NASA Goddard Space Flight Center

Sagan Workshop 2017

### Overview

Exoplanet Population Free Floating Planets Formation Mechanisms FFP yields via Ejection - G stars - M stars



#### **Confirmed Exoplanet Statistics**

| Discovery Method               | Number of<br>Planets |
|--------------------------------|----------------------|
| Astrometry                     | 1                    |
| Imaging                        | 44                   |
| Radial Velocity                | 639                  |
| Transit                        | 2734                 |
| Transit timing variations      | 15                   |
| Eclipse timing variations      | 9                    |
| Microlensing                   | 47                   |
| Pulsar timing variations       | 5                    |
| Pulsation timing variations    | 2                    |
| Orbital brightness modulations | 6                    |

NASA EXOPLANET ARCHIVE A SERVICE OF NASA EXOPLANET SCIENCE INSTITUTE

#### The number of known exoplanets has been increasing exponentially for 25 years...



\_\_\_\_\_

## **Exoplanet** Population



> 3500 confirmed > 580 Multis

### Sizes of Kepler Planet Candidates As of July 23, 2015



## What is a Free-Floating Planet?

free-floating planet rogue planet interstellar planet nomad planet orphan planet wandering planet starless planet sunless planet Planemo



FFP is a planetary-mass object that orbits the galaxy directly and does not appear to have a host star

## Free-Floating Planet Population

| Exoplanet                | Mass (M <sub>J</sub> ) | Age (Myr)       | Distance (ly) | Status                                                  | Discovery            |
|--------------------------|------------------------|-----------------|---------------|---------------------------------------------------------|----------------------|
| OTS 44                   | ~15                    | 0.5-3           | 160           | Likely a low-mass brown dwarf <sup>[19]</sup>           | 1998                 |
| S Ori 52                 | 2-8                    | 1–5             | 1150          | Age and mass uncertain; may be a foreground brown dwarf | 2000 <sup>[20]</sup> |
| Cha 110913-773444        | <b>5</b> -15           | ~2              | 163           | Candidate                                               | 2004 <sup>[21]</sup> |
| UGPS J072227.51-054031.2 | 5-40                   |                 | 13            | Mass uncertain                                          | 2010                 |
| [MPK2010b] 4450          | 2-3                    |                 | 325           | Candidate                                               | 2010 <sup>[22]</sup> |
| CFBDSIR 2149-0403        | 4-7                    | 11 <b>0-130</b> | 117-143       | Candidate                                               | 2012 <sup>[23]</sup> |
| MOA-2011-BLG-262         | ~4                     |                 |               | May be a red dwarf                                      | 2013                 |
| PSO J318.5-22            | 5.5-8                  | 21-27           | 80            | Confirmed                                               | 2013 <sup>[24]</sup> |
| 2MASS J2208+2921         | 11-13                  | 21-27           | 115           | Candidate; radial velocity needed                       | 2014 <sup>[25]</sup> |
| WISE J1741-4642          | 4-21                   | 23-130          |               | Candidate                                               | 2014 <sup>[26]</sup> |
| WISE 0855-0714           | 3-10                   |                 | 7.1           | Age uncertain; may be a brown dwarf                     | 2014 <sup>[27]</sup> |
| 2MASS J12074836-3900043  | 11-13                  | 7–13            | 200           | Candidate; distance needed                              | 2014 <sup>[28]</sup> |
| SIMP J2154-1055          | <b>9</b> –11           | 30-50           | 63            | Age questioned <sup>(29)</sup>                          | 2014 <sup>[30]</sup> |
| SDSS J111010.01+011613.1 | 10-12                  | 110-130         | 63            | Confirmed                                               | 2015 <sup>[31]</sup> |
| 2MASS J1119-1137         | 4-8                    | 7-13            | 94            | Candidate; distance needed                              | 2016 <sup>[32]</sup> |
| WISEA 1147               | 5-13                   | 7-13            | 94            | Candidate; distance needed                              | 2016 <sup>[33]</sup> |
|                          |                        | 1               |               |                                                         |                      |

\*from wikipedia, likely not up-to-date

- FFP have been observed by microlensing surveys and optical and IR wide-field surveys
- The detected free-floating planets are mostly giant worlds that could represent the tail-end of the stellar mass distribution

## **FFP Formation Mechanisms**



### formation via collapse planetary mass object sub-brown dwarf

### formation within disks FFP via ejection

## **FFP Formation Mechanisms**

Kant (1755) and Laplace (1796): planets form in disks

Core Accretion (Safronov 1969; Lissauer 1993) Gravitational Instabilities (Kuiper 1951; Boss 2006) Pebble Accretion (Levison; Chambers)

## **FFP Formation Mechanisms**

Ejected material is a natural outcome of the planet formation process

- planet-planet interactions
  - giant planet or stellar companion
  - external forces (passing stars, galactic tides, clusters)

Lots of analytical, numerical models

## Numerical N-body Models

Widely used tools to explore planet formation

- different stars
- different architectures
- explore where planets form and timescales
- fate of mass that falls into star (stellar pollution)
- fate of ejected mass (implications for FFPs)

Integration packages: *Mercury* (Chambers 2001) REBOUND (Rein 2011)

## **Planet-Planet Interactions**

Veras and Raymond (2012) scattering simulations:

Observed frequency of FFPs (giants)

 $\frac{N_{FFP}}{N_{stars}} = f_{giant} \times f_{unstable} \times n_{ejected}$ 

 $\begin{array}{ll} f_{giant} &= fraction \ of \ stars \ with \ giant \ planets \\ f_{unstable} &= fractions \ of \ giant \ planet \ systems \ that \ become \ unstable \\ n_{ejected} &= mean \ \# \ planets \ ejected \ via \ dynamical \ instability \end{array}$ 

Numerical simulations to estimate # of ejected planets (n<sub>ejected</sub>) needed to match observations

## **Planet-Planet Interactions**

### Scattering simulations:

### Veras and Raymond 2012

3 - 50 giant planets equal-mass Jupiters, or Saturn to 10 Jupiter-mass 3 AU - 200 AU, "ejection" if a > 10^5 AU



20 - 70% giant planets ejected

$$\frac{N_{FFP}}{N_{stars}} = f_{giant} \times f_{unstable} \times n_{ejected}$$

Assuming observationally motivated constraints

 $\frac{N_{FFP}}{N_{stars}} = 1.8$   $f_{giant} = 0.2$   $f_{unstable} = 0.7$   $N_{ejected} = 12$ Sumi et al. 2011

Inconsistent with observational constraints, concluded planet-planet scattering cannot explain the FFP population Veras and Raymond 2012  $\frac{NFFP}{r} = 0.25 \quad n_{ejected} = 1.6 \quad Mroz et al. 2017$ 

## FFP Terrestrial Planets

## Exploring gas giant instabilities on terrestrial FFPs

inner disk: 550 embryos/planetesimals middle disk: 3 giant planets >=5.2 AU (Saturn - 3 Mjup) outer disk: 1000 planetesimals

500 sims; giant planets unstable in ~2/3 Instabilities affected timescales, not mass



Raymond et al. 2011, 2012 Barclay et al. 2017

## Jupiter analogs are likely scarce

### Occurrence Rates of Jupiter (RV + Transits) ~ 6% (Wittenmyer et al. 2016)



### How do systems that lack giants affect terrestrial FFPs?

## Solar System Test Case

### Barclay et al. 2017

Sun + Jupiter + Saturn
Sun only

Moon-to-Mars-sized embryos in protoplanetary disk Fragmentation 5 Gyrs



# Jupiter+Saturn No giant planets



# Final Planetary Systems

### With giant planets



### No giant planets



## Mass in Ejected Material



### Barclay et al. 2017

No bodies larger than 0.3 M<sub>⊕</sub> were ejected

## **Ejection Timescales**



With giant planets, ejections occur prior to epoch of Earth formation



## WFIRST Detections



Prediction: WFIRST will find plenty of Mars' but few \*Earths

\*if giant planets are common

# Ejections in Pebble Accretion Regime



WFIRST prediction: at least one Earth or more massive FFP may be discovered for two Mars-like planets

### Caveats:

- simulations with migration do not lead to any ejections due to early dynamical instability
- simulations do not reproduce the observed distributions well

## What about M dwarfs??



>70% stars in galaxy are M dwarfs

Typical microlensing host star is an M dwarf



### Difficult to constrain

Surveys of disks at sub-mm wavelengths show an overall positive relation between stellar and disk mass, either linear or steeper

Andrews et al. 2013, Gaidos 2017



Scaling Solar Nebula to M < 0.25  $M_{sun}$  leaves < 1  $M_{Earth}$  in disk

## >5 Mearths around 0.5 Msun M dwarf



## >7 Mearths around 0.08 Msun M dwarf

#### **TRAPPIST-1** System



Illustration

Studying planet formation around M dwarfs is hard!

## M dwarf In Situ Simulations

### Hansen (2014) 0.5 Msun, no giant planets a = 0.05 - 0.5 AU (6 M<sub>Earth</sub>)

![](_page_29_Picture_2.jpeg)

![](_page_29_Figure_3.jpeg)

![](_page_29_Figure_4.jpeg)

## No ejected planets!

Jupiters are rare around M dwarfs, ... but Neptunes likely common

### Microlensing

![](_page_30_Figure_2.jpeg)

Suzuki et al. 2016

RVs (HARPS) Astudillo-Defru et al. 2017 GJ 3138d (M0, 0.7 Msun) P = 258 d

Msini = 10.5 Mearth

**GJ 628d** (M3.5, 0.3 Msun) P = 217 d Msini = 7.7 Mearth

Simulations in progress ...

## Pre-lim Results for Solar System

![](_page_31_Figure_1.jpeg)

# Demographics of outer giants will provide constraints on FFPs, formation mechanisms

![](_page_32_Picture_1.jpeg)

![](_page_33_Picture_0.jpeg)

The End

![](_page_35_Figure_0.jpeg)

Planet mass in Earth masses

![](_page_36_Picture_0.jpeg)

![](_page_37_Picture_0.jpeg)