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B3IG CHALLENG

=S IN PLANE

"ORMATION MODELING +
ORSERVATIONS

* planets form from small (by

disk — think metallicrty. ISM

mass) component of t

he

Nas gas-to-dust ratio

* we can't see particles at the crucial bullding block

stages

» solids / planet-gas interactions are complicated

* planets don't live where they were born
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OUTLINE

* The (old) standard model for planet formation: Core
Accretion

» Newer developments that address “textbook
problems’ In Core Accretion

» Unsolved problems

» [he role of gravitational instability



CORE ACCRETION,
CCLASSICALLY”

» Basic parts of core accretion:

* Dust grains coagulate to sizes
larger than the ISM (mm, cm,

m¢)

Gundlach &
| Blum 2014
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CORE ACCRETION,
CCLASSICALLY™

Gundlach &
Blum 2014

» Basic parts of core
accretion:

» Dust grains coagulate to
sizes larger than the ISM

(mm, cm, m?)

* Planetesimals (km+) form
via continued coagulation
of small bodies

Stevenson+ 986, Pollack+ 1996



CORE ACCRETION,
CCLASSICALLY™

» Basic parts of core accretion:

» Dust grains coagulate to sizes
larger than the ISM (mm, cm,

m?)

* Planetesimals (km+) form via
orowth of small bodies (aka
magic!, ‘meter-size” barrier)

» Planetesimals grow into
planet-cores via gravity-
assisted collisions

Stevenson+ 986, Pollack+ [ 996



CORE ACCRETION,
CCLASSICALLY™

- Basic parts of core accretion:

 Dust grains coagulate to sizes
larger than the ISM (mm, cm, m?)

* Planetesimals (km+) form via
osrowth of small bodies (aka
magic!, ‘meter-size”’ barrier)

* Planetesimals grow into planet-
cores via gravity-assisted collisions

- Planetary cores can undergo
runaway atmospheric growth

Stevenson+ 986, Pollack+ [ 996




WHAT'S SO HARD ABOUT PLANET

FORMATION (ESP IN THE OUTER DISK?)

* (Classic Problems:

* growing up to meter size bodies via coagulation is difficult

* growing through the "meter size” barrier Is an extreme
challenge due to radial drift

» |t takes longer than the disk lifetime (few Myr) to build a

pIg enough solid core mass to trigger runaway
atmospheric growth to make a gas giant



CORE ACCRETION IN THIS
CENTURY...

» Basic parts of classic core accretion:

Dust grains coagulate to sizes
larger than the ISM (mm, cm, m?)

Planetesimals form with some
size distribution (km-500km)

Planetesimals grow into planet-
cores via gravity-assisted
collisions

Planetary cores sometimes
accrete gaseous atmospheres

 Updated parts of core accretion:

* Dust grains grow early (Najita & Kenyon

2014, Andsell+ 2016) to at least cm sizes
aided by pressure traps

* Planetesimals form via Streaming Instability

with range of sizes (up to ~500km) (Youdin
& Goodman 2005, Simon et al 2016)

« Planetesimals accrete substantial mass from

"pebbles,’ not just other planetesimals
(Ormel & Klahr 2010, Lambrechts &
Johansen 2012)

* Planetary cores sometimes undergo gas

accretion, fed by circumplanetary disk (Zhu
2016)




RADIAL DRIFT

oas feels pressure, dust
doesn't

tarite [YY]

particle
drift
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PRESSURE BUMPS CAN TRAP
PARTICLES

P(r)* Pinilla + Youdin 2017/

changes In radial
pressure profile

can aid In
particle
concentration
and thus
coagulation

sub-Keplerian
gas velocity




GRAIN GROW ITH
SIMULATIONS

planetesimal formation and
pebble accretion
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Grains are observed to grow

Najita & Kenyon 204

* observations indicate
that dust must grow
quickly beyond mm-cm 0.8
sizes —otherwise disks
simply don't have
enough mass to account
for observed exoplanets.
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* recall that grains emit |
' ' 0.0} L — -
efficiently at size near L L =
Wa\/eleﬂg‘th log Disk Mass (Earth Masses)




CONSEQUENCES OF RADIAL
DRIFT?

* ring structures could simply

be particles, not planets
| » radial drift also serves to
| trigger planetesimal

formation!




The Streaming Instability (Sl)
Particles trigger their own concentration while interacting with gas

= solid mass flux > & S

headwind

D ——— T E—————

to star

Youdin & Goodman 2005; Johansen & Youdin 2007; Bai & Stone 2010, etc.




SI: FROM DUST GRAINS TO >[00KM ASTEROIDS /
PLANETESIMALS A
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Planetesimals from S| span a wide

range of sizes

* broaq, large, initial
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planetesimal
distribution
seems consistent
with Kuiper Belt
objects

not all pebbles /
dust turns Into
planetesimals



FROM [OOKM TO EARTH MASS
CORES

asterold size bodies are
oravitationally attracted
to each other

when they collide, a lot
of the mass goes Into
one bigger body, but
smaller debris Is
produced as well

this, plus S, keep a lot of
mMass around In
"pebbles”




core growth via pebble accretion

Vhw

Aivoy

Vgas = 3XQ/2 + vy

* Ignoring gas drag,
only particles with
just the right
velocity get trapped
in the Hill sphere

.........
o
.
.

* Including gas drag
allows a wider

/ range of particles
m to accrete

Ormel & Klahr, 2010



core growth via pebble accretion
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Growth timescales change when including

aerodynamic pebble capture

A=0.05, Z=0.01 » (as giants can In

principal form even
at 50 AU in disk

Ifetime
§@ 1072
= * Problem is first mass
o doubling time, not
. the last
10

10° 10" 10> 10> 10* 10° 10° 10’ BUT: need Inrtial ~pluto

Lambrechts & Johanste/ 1 2012 Mass COres...



The critical core mass to trigger runaway

osrowth declines with semi-major axis
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* bven though
osrowth times are
slower; less core

orowth Is required

» [emperature goes

down, Bondi radius

g0es up, anc
opacity declines



psY*
WHAT'S SO HARSAROUT PLANET

FORMATION (ESP IN THE OUTER DISK?)
» Classte Problems:

Modern
*© Srowis
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pebble accretion!



REMAINING CHALLENGES
(ABRIDGED)

* Planet migration Is too fast

* We haven't found enough massive disks

» Disk substructure indicates more giant planets

than we observe



1073 ¢

where is all the mass?
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DoArd4

HD142527 HD97048

DISKS HAVE A LOT OF

SUBSTRUCTURE
Van der Marel, 201643



WHAIT ABOUT PLANETS FROM
GRAVITATIONAL INSTABILITY?
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WHALI IS GRAVITATIONAL
INS TABILITY?

* A hydrodynamic instability

that arises In rotationally

supported disks when =
self-gravity wins out S

over pressure support on i? S IOlONe
small scales, and stabilization

due to on large

scales Q . CSQ _ fM* H
(s MD (A

Fragmentation is the non-linear outcome of this instability



Log M(M _yr 1)

Log 1:d (au)

Conditions for measured Class | disks around sun-like stars

are typically too low In mass and too hot to be unstable

Kratter & Lodato, 2016



How big are objects that form via Gl
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Fragments migrate inwards on ~ |0 outer dynamical timescales.

P MC —1 R 1.75
ey 0.01 M, T

/Zhu etal 2012



Object Mass (M)

Object Mass (M)
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THE RUNTS OF THE LITTER?

(KRATTER ET AL, 2010B)
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THANKS FOR YOUR
Al TENTION

 Updated parts of core accretion:

» Basic parts of classic core accretion:

Dust grains coagulate to sizes
larger than the ISM (mm, cm, m?)

Planetesimals form with some
size distribution (km-500km)

Planetesimals grow into planet-
cores via gravity-assisted
collisions

Planetary cores sometimes
accrete gaseous atmospheres

* Dust grains grow early (Najita & Kenyon

2014, Andsell+ 2016) to at least cm sizes
aided by pressure traps

* Planetesimals form via Streaming Instability

with range of sizes (up to ~500km) (Youdin
& Goodman 2005, Simon et al 2016)

« Planetesimals accrete substantial mass from

"pebbles,’ not just other planetesimals
(Ormel & Klahr 2010, Lambrechts &
Johansen 2012)

* Planetary cores sometimes undergo gas

accretion, fed by circumplanetary disk (Zhu
2016)




