Euclid

Jean-Philippe Beaulieu

University of Tasmania, Hobart Institut d'Astrophysique de Paris

To get small planet, you need small sources and higher angular resolution

Bennett & Rhie 1996

High Resolution + large field + 24hr duty cycle

Dark Energy & microlensing

- 2002 Bennett & Rhie space based microlensing
- 2004-2005 : Cosmic shear and microlensing from Dome C ? (Mellier/ Beaulieu -> after all, not a good idea, so no papers about it)
- Bennett, Gaudi et al. advocating for space based microlensing
- 2007 DUNE proposal (3 months of microlensing)
- « Everything that is good for cosmic shear is good for microlensing » Beaulieu, Kerins, Mao, Bennett, Dieters, Gaudi, Gould, Batista et al., 2008, « Towards A Census of Earth-mass Exo-planets with Gravitational Microlensing", arXiv:0808.0005
- Microlensing program on board EUCLID (proposed 4 months)
- 2010 Decadal survey with WFIRST
- Thesis of Matthew Penny: simulations for EUCLID & WFIRST.

Euclid Top Level Science Requirements

Sector	Euclid Targets
Dark Energy	• Measure the cosmic expansion history to better than 10% in redshift bins $0.7 < z < 2$.
	• Look for deviations from $w = -1$, indicating a dynamical dark energy.
	• Euclid <i>alone</i> to give $FoM_{DE} \ge 400$ (1-sigma errors on w_{p} , & w_a of 0.02 and 0.1 respectively)
Test Gravity	• Measure the growth index, γ , with a precision better than 0.02
	• Measure the growth rate to better than 0.05 in redshift bins between 0.5< $z < 2$.
	• Separately constrain the two relativistic potentials Ψ, Φ .
	Test the cosmological principle
Dark Matter	 Detect dark matter halos on a mass scale between 10⁸ and >10¹⁵ M_{Sun}
	 Measure the dark matter mass profiles on cluster and galactic scales
	 Measure the sum of neutrino masses, the number of neutrino species and the neutrino hierarchy with an accuracy of a few hundredths of an eV
Initial Conditions	• Measure the matter power spectrum on a large range of scales in order to extract values for the parameters σ_8 and <i>n</i> to a 1-sigma accuracy of 0.01.
	• For extended models, improve constraints on <i>n</i> and α wrt to Planck alone by a factor 2.
	• Measure a non-Gaussianity parameter : f_{NL} for local-type models with an error < +/-2.

- DE equation of state: $P/\rho = w$, and $w(a) = w_p + w_a(a_p-a)$ Growth rate of structure formation: $f \sim \Omega^{\gamma}$; ٠
- ٠
- FoM=1/($\Delta w_a x \Delta w_p$) > 400 \rightarrow ~1% precision on w's. ٠

Euclid cosmological probes

Observational Input	Probe	Description
Weak Lensing Survey	Weak Lensing (WL)	Measures the expansion history and the growth
		factor of structure
Galaxy Redshift Survey:	Baryonic Acoustic Oscillations	Measure the expansion history through D(z) and
Analysis of P(k)	(BAO)	H(z) using the "wiggles-only".
	Redshift-Space distortions	Determine the growth rate of cosmic structures
	-	from the redshift distortions due to peculiar
		motions
	Galaxy Clustering	Measures the expansion history and the growth
		factor using all available information in the
		amplitude and shape of P(k)
Weak Lensing plus Galaxy	Number density of clusters	Measures a combination of growth factor (from
redshift survey combined with		number of clusters) and expansion history (from
cluster mass surveys		volume evolution).
Weak lensing survey plus galaxy	Integrated Sachs Wolfe (ISW)	Measures the expansion history and the growth
redshift survey combined with	effect	
CMB surveys		
Weak lensing survey plus galaxy	Weak lensing on CMB	Measures the high redshift expansion regime
redshift survey combined with	anisotropies	and growth of structures
CMB surveys		

The ESA Euclid space mission

Courtesy: S. Pottinger, M. Cropper and the VIS team

Payload and Mechanism Control Unit (PMCU)

VIS

Table 1: VIS and weak lensing channel characteristics

Spectral Band	550 – 900 nm		
System Point Spread Function size	≤0.18 arcsec full width half maximum at 800 nm		
System PSF ellipticity	≤15% using a quadrupole definition		
Field of View	$>0.5 \text{ deg}^2$		
CCD pixel sampling	0.1 arcsec		
Detector cosmetics including cosmic rays	≤3% of bad pixels per exposure		
Linearity post calibration	≤0.0 1%		
Distortion post calibration	\leq 0.005% on a scale of 4 arcmin		
Sensitivity	$m_{AB}\!\!\geq\!\!24.5$ at 10σ in 3 exposures for galaxy size 0.3 arcsec		
Straylight	\leq 20% of the Zodiacal light background at Ecliptic Poles		
Survey area	15000 deg ² over a nominal mission with 85% efficiency		
Mission duration	6 years including commissioning		
Shear systematic bias allocation	additive $\sigma_{sys} \le 2 \ge 10^{-4}$; multiplicative $\le 2 \ge 10^{-3}$		

Ciuppei et al 2010.3PIE

Lucid

NISP

Courtesy: T. Maciaszek and the NISP team

- FoV: 0.55 deg²
- Mass : 159 kg
- Telemetry: < 290 Gbt/day
- Size: 1m x 0.5 m x 0.5 m
- 16 2kx2K H2GR detectors
- 0.3 arcsec pixel on sky
- Limiting mag, wide survey AB : 24 (5 σ)

• 3 Filters:

- Y (950-1192nm)
- J (1192, 1544nm)
- H (1544, 2000nm)
- 4 grisms:
- •1B (920 1300) , 1 orientation 0°
- •3R (1250 1850), 3 orientations 0°, 90°, 180°

Maciaszek et al 2016:SPIE

Euclid Calibration Workshop ESAC, 20 SEP 2016

Euclid Survey Machine: 15,000 deg² + 40 deg² deep

Technical Performa	ance Measure	Requirement	CBE		
Image Quality					
	FWHM (@ 800nm)	180 mas	163 mas		
	ellipticity	15.0%	5.9%		
	R2 (@ 800 nm)	0.0576	0.0530		
	ellipticity stability σ(ει)	2.00E-04	2.00E-04		
VIS Channel	R2 stability σ(R2)/ <r2></r2>	1.00E-03	1.00E-03		
	Plate scale	0.10 "	0.10 "		
	Out-of-band avg red side	1.00E-03	1.13E-05		
	Out-of-band avg blue side	1.00E-03	2.12E-04		
	Slope red side	35 nm	15 nm		
	Slope blue side	25 nm	8 nm		
	rEE50 (@1486nm)	400 mas	217 mas		
NISP Channel	rEE80 (@1486nm)	700 mas	583 mas		
	Plate scale	0.30 "	0.30 "		
Sensitivity					
VIS SNR (for mAB =	= 24.5 sources)	10	17.1		
NISP-S SNR (@ 1.6ເ source)	ım for 2xe-16 erg cm-2 s-1	3.5	4.87		
NISD DSNR/for	Y-band	5	5.78		
mAB = 24 sources)	J-band	5	6.69		
111AB – 24 Sources)	H-band	5	5.35		
NISP-S Performanc	e				
Purity		80%	72%		
Completeness		45%	0.52		
Survey					
Wide Survey Coverage		15,000 deg2	15,000		
Survey length [years]		5.5	5.4		

Euclid

ESA Mission PDR October 2015 successful:

Euclid performances meet the scientific and survey requirements

- Image quality of the system fully in line with needs.
- Ellipticity, R² stability and Non-convolutive errors performance dictated mainly by ground processing
- *Purity* not compliant with current data processing methods but expected to be recovered with Euclid specific algorithms (not yet installed at this stage).

Euclid Calibration Workshop ESAC, 20 SEP 2016

Need Wide+Deep Surveys: photom+spectro

Euclid Wide:

- 15000 deg² outside the galactic and ecliptic planes
- 12 billion sources (3- σ)
- 1.5 billion galaxies with
 - Very accurate morphometric information (WL)
 - Visible photometry: (u), g, r, i, z , (R +I+Z) AB=24.5, 10.0 σ +
 - NIR photometry : Y, J, H AB = 24.0, 5.0σ
 - Photometric redshifts with 0.05(1+z)
 accuracy
- 35 million spectroscopic redshifts of emission line galaxies with
 - 0.001 accuracy
 - Halpha galaxies within 0.7 < z < 1.85
 - Flux line: 2 . 10⁻¹⁶ erg.cm⁻².s⁻¹; 3.5σ

• Euclid Deep:

- 1x10 deg² at North Ecliptic pole + 1x20 deg² at South Ecliptic pole
 - + 1x10 deg² South close to Equatorial area
- 10 million sources $(3-\sigma)$
- 1.5 million galaxies with
 - Very accurate morphometric information (WL)
 - Visible photometry: (u), g, r, i, z , (R +I+Z) AB=26.5, 10.0 σ +
 - NIR photometry : Y, J, H AB = 26.0, 5.0σ
 - Photometric redshifts with 0.05(1+z) accuracy
- 150 000 spectroscopic redshifts of emission line galaxies with
 - 0.001 accuracy
 - Halpha galaxies within 0.7 < z < 1.85
 - Flux line: 5 . 10⁻¹⁷ erg.cm⁻².s⁻¹; 3.5σ

Euclid Wide and Deep Surveys

Overview mission timeline

Science with Euclid will start in 2022 with Q1 and in 2023 with DR1

Sun Avoidance Angle

Pointing constraints

The S/C can be operated for a certain range of SAA orientations that limit depointing of the S/C:

MRD R-440-8: The EUCLID spacecraft shall be able to implement the Deep and the Wide Extragalactic Survey with a variable solar aspect angle included between 89 degrees and 121 degrees.

PSF stability requirements can be ensured for a given range of SAA variation around a reference pointing direction:

MOCD R-SYS-OP-MS-030: The EUCLID spacecraft shall be able to implement the Deep and the Wide Extragalactic Survey with a variable solar aspect angle included between 90 degrees and 95 degrees.

Operation angle from -1 deg to +31 deg.

We can observe for about a month, twice a year.

EUCLID has no contigency for weight : we cannot extend the shielding.

Maximum observation : 2 months/year

MaBµLS simulator

Diameter (m)	
Central blockage (m)	
Slew + settle time (s)	

 $\begin{array}{r}
 1.2 \\
 0.4 \\
 85(285)
 \end{array}$

Detector parameters						
Instrument	VIS		NISP			
Filter	RIZ	Y	J	H		
Size (pixels)	$24k \times 24k$		$8\mathbf{k} \times 8\mathbf{k}$			
Pixel scale (arcsec)	0.1		0.3			
PSF FWHM (arcsec)	0.18	0.3^{*}	0.36^{*}	0.45^{*}		
Bias level (e^{-})	380^{+}		380^{\dagger}			
Full well depth (e^{-})	2^{16}		2^{16}			
Zero-point (ABmag)	25.58^{\star}	$24.25^{\star\star}$	$24.29^{\star\star}$	$24.92^{\star\star}$		
Readout noise (e ⁻)	4.5	7.5^{*}	7.5^{*}	9.1^{*}		
Thermal background	0	0.26	0.02	0.02		
$(e^{-} s^{-1})$						
Dark current ($e^{-} s^{-1}$)	0.00056^{\diamond}		0.1^{*}			
Systematic error	0.001^{\dagger}		0.001^{\dagger}			
Diffuse background	21.5^{\ddagger}	21.3^{\ddagger}	21.3^{\ddagger}	21.4^{\ddagger}		
$(ABmag arcsec^{-2})$						
Exposure time (s)	540(270)	90	90	54		
Images per stack	1	3(1)	3(1)	5(2)		
Readout time (s)	< 85	~ /	$\dot{5}^{\dagger}$	~ /		

Besançon model

Microlensing simulator 3 fields, 270 sec per pointing, 5x2 months observing

Penny, Kerins, Rattenbury, Beaulieu, Robin, 2013, MNRAS PhD Matthew Penny

Simulated images of galactic Bulge

EUCLID Microlensing survey Beaulieu, Kerins, et al. Simulation work done during Matthew Penny's thesis

3 fields observed every 17 min in H, every 12 hours in VIS, J, Y. Mini-survey during commissionning (24h), then 4 x 1 months survey

- Measuring cold Earth abundance and mass function
 ~35 planets / month (5 Earth / month, 15 Neptune / month)
- Getting constraints on free floating planets
 ~15 free-floating planets / month
- EUCLID/ML complements parameter space probed by RV and KEPLER

Measuring the cold planet mass function below 1 Earth mass.

 Possibility of simultaneous EUCLID-WFIRST in the extended mission 2026+ (parallax between EUCLID and WFIRST to measure masses of Earth mass free floaters)

Penny et al., 2013 MNRAS 434, 2

ExELS

Approx location of 3 ExELS fields

VVV survey near-IR mosaic of Galactic Centre

Simulated Euclid H band image from a single 2k x 2k NISP array

Detailed image-level simulation of ExELS photometry carried out by SWG (Penny et al

 $M_{\rm l} = 0.86 M_{\odot}$ $M_{\rm p} = 1 M_{\oplus}$ $a = 2.4 {\rm AU} \ \Delta \chi^2 = 1526.96$

 $M_{\rm p} = 1M_{\oplus} \ \Delta \chi^2 = 1090.36 \ N_{>3\sigma} = 7$

Normalized flux

(a)

Measuring the planet mass function

Survey constraints

- Observability of the Gal Centre limited by design of Sun shield and the constraint on Solar aspect angle. This fixes the times when the bulge is observable with Euclid. ExELS could get squeezed if these times are used up for primary science calibration or other surveys.
- Current simulations based on Red Book
 Euclid design indicates that ExELS
 requires 4 months of observing time in
 order to achieve the primary science
 objective of measuring the abundance of
 cold Earth mass planets with at least 3sigma precision.

Abundance measurement sensitivity versus planet mass for different extrapolations of measured exoplanet mass functions and survey lifetimes

Microlensing program on board the EUCLID Dark Universe Probe

- Measuring cold Earth abundance and mass function with 4 months of survey
- Getting free floating planets down to the mass of Earth
- Mass measurement of free floaters (ground-space parallax)
- EUCLID complements parameter space probed by RV and KEPLER
- Entering the habitable Earth around G stars would require larger survey (300+ days)
- EUCLID will launch in 2020, WFIRST in 2025+

Penny et al., 2013, MNRAS, « ExELS: an exoplanet legacy science proposal for the ESA Euclid mission I. Cold exoplanets, arXiv:1206.5296

Beaulieu et al., 2010, "EUCLID : Dark Universe Probe and Microlensing planet Hunter", arXiv:1001.3349

Conclusion

- Statistics of planets beyond the snow line.
- Sensitivty to low mass planets, and free floating planets
- EUCLID microlensing
- EU thought of DE & Microlensing in 2007 already
- Proposed 4 Months (decision in 2018?)
- Mass function of cold planets, first results on free-floaters (if any)?
- EUCLID contributions to WFIRST
- Matthew Penny ! (PhD thesis on EUCLID microlensing, building the reference tools)
- An early survey to serve as position reference for mass-measurements.
- Simultaneous EUCLID/WFIRST observations (extended part of the mission)

A binary, with very bright lens

Source star: K3 red giant at 8 kpc I=16.42, V=19.42

Lens star: Binary composed of Mdwarfs I=16.3, V=18.2

A binary, with very bright lens

Source star: K3 red giant at 8 kpc I=16.42, V=19.42

Lens star: Binary composed of Mdwarfs I=16.3, V=18.2

Prediction by Gould et al.

VLT UVES observations

At the initative of I. Boisse and A Santerne (LAM, Marseille) RV People

10 spectra, 1h, S/N~20, R~ 40 000 Th-Ar calibrations before and after

Cross correlation

Source and lens RV

Using the source as RV reference. 94 m/s RMS

RV model and data

Fitting Source and lens spectra UVES, OGLE, KECK AO, ARCOIRIS

Giant source, forground G star, 0.95 Mo at 1.1 kpc

Lesson from RV

We can detect binary lens RV modulation.

Here, the initial microlensing model was wrong.

New modeling, using constraint on source and lens needed.

Boisse et al., 2015, The first radial velocity measurements of a microlensing event: no evidence for the predicted binary, A&A

Santerne et al. 2016, Spectroscopic characterisation of microlensing events Towards a new interpretation of OGLE-2011-BLG-0417, astroph

See also another system :

Yee et al., 2016, Two Stars Two Ways: Confirming a Microlensing Binary Lens Solution with a Spectroscopic Measurement of the Orbit