Jean-Philippe Beaulieu

University of Tasmania Institut d'Astrophysique de Paris

High-Resolution Follow-up of Microlensing Planets

Partners in crime : V Batista J.B. Marquette (IAP), A. Fukui (Okayama),
D. Bennett & A. Bhattacharya (Goddard), A. Cole J. Blackman (UTAS),
C.S. Lee (NAOJ), P Fouqué (CFHT), C. Henderson, Y. Shvartzvald, C. Beichman M. Ygouf (CALTECH), N. Koshimoto, T. Sumi (Osaka)

High angular resolutions: 3 examples

- Detection lens flux without resolving lens/source
- Resolving source & lens, measuring rel proper motion
- Hunting for a dark lens (free-floating candidate)

Getting physical parameters

Mass ratios & projected separations are well known

- Mass ratio $q = M_p/M_*$
- Planet/star separation in Einstein Ring radius units
- Timescale t_E

We need mass-distance relations to get physical parameters:

- Masse-distance relation from Einstein ring radius measurements

Easy to get, when you have caustic crossings

- Masse-distance relation from Parallax measurements

Ground only is often problematic. Ideal with good-old-Spitzer/K2!

- Masse-distance relation from high angular resolution observations With KECK AO: it is cheap (15-30 min) to constraint light from lens. Resolving source/lens is more tricky (~60 mas)

Ogle 2014-BLG-124: ground- Spitzer parallax

Udalski et al. 2015, Yee et al. 2016

.05

.15

.1 π_{ε.ε}

.2

Well constrained Parallax, but no caustic crossing !

Source & lens are aligned

Source predicted $H=17.04 \pm 0.05$

Source +blend measured at H=15.95 \pm 0.03, So the blend is H=16.46 \pm 0.06

Is all the excess light coming from the lens ?

Study by Naoki Koshimoto and Virginie Batista.

Flux excess is an upper limit.

Within 100 mas, several scenarii. Which one is the more probable:

1/ Blend = lens
2/ Blend = lens + chance aligned star
3/ Blend = lens + companion to the lens (not affecting the light curve)
4/ Blend = lens + companion to the source (and any combination of 2, 3, 4)

Rule of thumb:

Bright sources, maybe some contamination by faint target (could be few % effect)

with faint sources and faint lenses, extra caution

Most likely, ~80 % of the excess light is the lens

If 100 % of the light is the lens: Host star mass: 0.91 \pm 0.06 M/ Planet mass: 0.65 \pm 0.04 M_{Jupiter} Host star mass: $0.89 \pm 0.06 \text{ M}_{Jupiter}$ Planet mass: $0.64 \pm 0.04 \text{ M}_{Jupiter}$ Orbit: $3.48 \pm 0.22 \text{ AU}$ Distance: $3.6 \pm 0.2 \text{ kpc}$

MOA-2013-BLG-220, a massive gazous planet

Mass ratio $3.01 \pm 0.02 \ 10-3$, good Einstein ring radius 0.456 ± 0.003 mas

If all the light is the Lens, then Mass : 0.96± 0.07 Mo Distance: 6.55±0.5 kpc

A sub-Saturn orbiting a K or M dwarf?

Before: Mass 0.38 \pm 0.2 Mo ; Distance 6.1 \pm 0.3 kpc Mp ~50 Mearth

After: Mass 0.82 ± 0.05 Mo ; Distance 6.9 ± 0.3 kpc ; Mp^{\sim} 108 MEarth

OGLE-2015-BLG-966, excellent Spitzer parallax

Cold Neptune orbiting a 0.38 Mo, at 2.5-3.3 kpc

(Street et al., 2016)

Detection of the blended flux at KECK

KECK observations by C. Henderson & Y. Schvartzvald.

Source + blend, $H=16.92 \pm 0.05$; Source estimate: 17.14

A companion at H=20 to source/lens?

Let's take a deep breath

As you can see small errors on the color, extinction, AO measurements has a significant consequences.

So let's be cautious, do parallel analysis of the same data by 2 groups.

Calen & Yossi, there is some work to do on 966 😊

It has to start with re-measuring the colors.

From time to time, it seems to work just fine ! OGLE-2013-BLG-132

Lens distances with high angular resolution observations constraints

Distribution of lenses, preliminary

Well measured distances systems associated with spiral arms or bar

OGLE-2005-BLG-169Lb : Resolving source & lens

With KECK, detecting the lens in 2013 Measuring proper motion

Batista et al., 2015

HST: 6.5 years after the event

Bennett et al., 2015

Detecting source & lens, measuring proper motion

Gould et al. 2006

Initial paper	
& preduction	C L

Relative proper motion ~ 7-9 mas/yr Host star mass $0.5 \pm 0.3 M_{\odot}$ Planet mass ~ 13 $M_{jupiter}$ Distance $D_L=2.7 \pm 1.6$ kpc Projected separation ~ 2.7 AU

HST Bennett et al. 2015

 $\mu_{rel_l} = 7.39 \pm 0.2 mas/yr$ $\mu_{rel_b} = 1.33 \pm 0.23 mas/yr$

Host star mass: $0.69 \pm 0.02 \text{ M}_{\odot}$ Planet mass: $14.1 \pm 0.9 \text{ M}_{\text{earth}}$ Distance D_L = $4.1 \pm 0.4 \text{ kpc}$ Projected separation $3.5 \pm 0.3 \text{ AU}$ KECK Batista et al. 2015

 μ_{rel_l} = 7.28 ± 0.12 mas/yr μ_{rel_b} = 1.54 ± 0.12 mas/yr

Host star mass: $0.65 \pm 0.05 \text{ M}_{\odot}$ Planet mass: $13.2 \pm 1.5 \text{ M}_{earth}$ Distance D_L = $4.0 \pm 0.4 \text{ kpc}$ Projected separation $3.4 \pm 0.3 \text{ AU}$

In agreement with Gould et al., 2006, but more accurate results.

MACHO-95-BLG-3, a free-floating planet?

Figure 2. The dual-color light curve of event 95-BLG-3 during the 1995 Galactic bulge season and a close-up of the light curve showing the lens fit.

MACHO-95-BLG-3

20 arcsec

3 companions, 0.6, 0.4, 0.3 arcsec

With Marie Ygouf, CALTECH

Free-floating planet ? Probably not..

What we need in papers

- Source flux I and colour V-I, with errorbars.
- Source distance and extinction, with errorbars.
- If H band data available, give estimate of source flux in H,

with errorbars.

- Do not hesitate to double check these numbers, and to measure them again from the images.
- If you write discovery papers, why not asking around if there are high angular resolution observations available ?
- Is it fair game to publish models using H band data and not publishing the source flux ?

Do your duty as a co-author or a referee !

Observing cookbook

- Adaptive optics on 8m+ telescope (KECK, SUBARU, VLT, GEMINI)
- Natural Guide Star or Laser Guide Star
- Dithering, but not too big steps (few arcsec max)
- Take sequence of images at each dithering position
- Do not hesitate to overkill (a bit) prediction of the exposure calc
- Take a sky obs (same as people working on galactic center)
- Attempt to measure relative source-lens proper motion only in very good seeing condition (60 mas or better), preferably K band.
- Suite of tools from Astr*O*matic.net, Sextractor, Swarp, Scamp, PSFEx), starfinder (IDL) ,GAIA, topcat
- Calibration (astrometry, photometry) using reprocessed VVV data.
- Aperture photometry (for flux calibration purposes).
- PSF fitting: extracare needed, weird shape & variable.

To keep in mind

- Important to be cautious with high angular resolution.
- Measuring fluxes in AO, ok at 5% level, from time to time 2%.
- Unresolved source/lens: Procedure to estimate contamination by blends, companions to source & to lens (AO, Euclid, WFIRST)
- Centroid shift due to source/lens: Procedure to estimate contamination by blends, companions to source & to lens (AO, Euclid, WFIRST)
- Refining AO strategy to measure source-lens centroid shifts.
- Feedback from direct detection people

Conclusion

High Angular Resolution observations :

- Detect flux aligned with the source (AO)
- Measure source-lens relative proper motion
 - resolving source and lens with AO
 - measuring variation of centroid of PSF (HST, WFIRST, Euclid)

It is cheap to do (30-60) min per target.

About 30+ systems observed to date and 15 free-floating planet candidates

Derived physical parameters can be very different from Bayesian analysis

Distribution of planets is not uniform

Spiral and sand bar planetary systems...

3 papers heading for submission to ApJ within a month