Light curve computation in
binary microlensing

SO E

Valerio Bozza
University of Salerno, Italy

Our goal

« Our purpose is to calculate microlensing light curves

10}

e
-2 -1.5 -1 —0.51/—\%[— 1o~ J

+ ... that is the magnification of a given source that passes
behind a given binary lens.

Our goal

* For a given source position and size and for a given lens
model, we need to calculate the magnification factor

24
/

/45'
1 1p
o.75§ 0.75f .
0.5 0.5¢ \/_\
0.25f “"//1k\ 0.25f
0k J\\ﬂ 0k _
E £]
-0.25F ‘)/"\[ﬁ -0.25¢ /i_\/
-0.5F -0.5f d
~0.75F -0.75F
-1.5 -1 -0.5 0 0.5 1 1.5 -1 -0.5 0 0.5 1 1.5 2

« We must find the images and calculate their area.

Summary

* In order to reach this goal, we will take several steps:

« Point-source magnification (Solving the lens equation)

* Finite-source approximations (Quadrupole and Hexadecapole)

 Full calculations

/ \>

* Inverse ray-shooting « Contour integration

l

* VBBinaryLensing

1. Point-source magnification

Lens equation

* Let us use complex notations (Witt 1990), in a frame
centered on the lower mass object:

ml=L
e —— g
Z— S Z mz—m

« z can be eliminated using the conjugate equation.
* We end up with a fifth order polynomial equation

5 o
p(z)=zcizl =0

=0
3‘;‘m§
-3mz |[2Z+838|-1+383Z-2ZZ+m:
£-82 g8+ (-1+mp-228(1+mp)) +8% (E-2Zfmp+Z(1+8 +mp
s*E+22E8+9% (-1+22E8-5+m) -5 (24228 -28m
Fl-1+23Z+ZZl -38|-1+23Z+ZZ+m;
s-Z Z

1. Point-source magnification

Finding the roots

» Starting from an arbitrary initial condition z,, we can find a
root of a nt" degree polynomial using Laguerre’s method:

" o PG 2"

“ G Jli-1)uH - G*) plz)’ o)

Zk+l =z

* Once we have the first root z,, we can divide the original
polynomial by (z-z,) and find the next root.

 After all roots have been found on the reduced polynomials,
they must be “polished” using the original full polynomial.

* Numerical Recipes implements this algorithm by zroots
and laguer (Press etal.)

* An optimized root finding algorithm was published by
Skowron and Gould (2012).

http://www.astrouw.edu.pl/~jskowron/cmplx roots sg

1. Point-source magnification

Point-source magnification

Not all roots of p(z) are images.

They must be checked with the original lens equation.
When the source is outside the caustics, two roots are
spurious and must be discarded.

For each image we can calculate the magnification by the
iInverse Jacobian

84‘,7: MM
0z (21_5)2 Z

Uy =J1(ZI)=‘

The magnification of a point-source by a binary lens is then

ﬂ=zﬂ1
T

2. Finite-source approximations

Finite-source effect

* We know that binary lenses have extended caustics where
the magnification diverges.

 Finite source effects show up much more often than in the
single lens case.

* Direct integration in the
source plane is extremely
unstable due to divergences.

Upg = fﬂpsdzy

source

 Alternative algorithms
needed.

2. Finite-source approximations

Quadrupole and Hexadecapole

* Far from caustics, we can Taylor expand the magnification
and take limb darkening into account
(Pejcha & Heyrovsky 2007; Gould 2008; Cassan 2017)

Ap° (. 1 Apt (. 11
A=A +—=—|1--T|+—2—[1-—T|+...
= At (5) 3 (35)

» The coefficients can be obtained by averaging the
magnification calculated on few points on the boundary:

3
4,, = %2 A[pcos(jir/Z),psin(jJrQ)]— 4,
7=0
« Quadrupole: A,p°=4,,

« Hexadecapole: O

L
16 4 — A A+ A < ¢ oo >
A2p2 _ ,0/2,:-; 0.+ : A4,04 _ Pt ; px 2,02 \:/

\e

2. Finite-source approximations

»n

Validity range
| | | 0 = 0.0
Accuracy = 0.01

[0 Point-source valid
Quadrupole valid

W Hexadecapole valid

B Full calculation needed

o = 0.001
Accuracy = 0.01

2. Finite-source approximations
Validity range

p =0.01
Accuracy = 0.01

[0 Point-source valid
Quadrupole valid

W Hexadecapole valid

B Full calculation needed

0p=0.1
Accuracy = 0.01

y1

3. Inverse ray-shooting

Inverse ray shooting

* For each point in the lens plane z, the lens

map gives the position T in which a source §=z- -

should lie in order to have an image in z.

\ \
IC2
——
0
\ \

* By scanning the whole lens plane, we can find all images.
* The area of the images is proportional to the number of

rays landing at the source.
* Limb darkening obtained by weighing rays by the source
brightness at landing point.

* Every ray requires little computation.
« Large numbers of rays needed to be accurate.

3. Inverse ray-shooting
Magnification maps

« A uniform scansion of the lens plane results in a magnification
map in the lens plane. (Wambsganns 1992, 1997)

 This can be re-used for
any source trajectories on
the same lens model.

* A broad search in the
parameter space is
cheap for fixed s and q.

3. Inverse ray-shooting

Image-centered ray-shooting

* First solve the |ensS e ————

equation for the eneenees
center of the
source. -

* Then shoot rays |SEEEEEEHHYE
around to get all : T
the images i
(Bennett & Rhie 1996; R
Bennett 2010)

* Polar coordinates | Sistacfick il
help diminish the

number of rays.

llllllllll
..........
llllllllllll

3. Inverse ray-shooting

Contours for driving ray-shooting

* For high-magnification events, ray
. . AN
shooting can be limited to an annulus /

around the Einstein ring
(Dong et al. 2006)

* Otherwise, the regions in which to
shoot rays can be defined by the TN /
boundaries of the images of a circle _, e
larger than the source. oo

 Light rays can be collected in
hexagonal pixels

* Check pixels instead of rays
(Dong et al. 2009)

3. Inverse ray-shooting

Inverse-ray-shooting on GPUs

The single ray shot is simple Cho Hong Ling (Joe)
. Massey University, NZ
enough to be parallelized on s e

GPUs.

Joe Ling (NZ) has developed a fast
working code for inverse-ray
shooting on GPUs.

Huge magnification maps can be generated quite rapidly.
However, if they are not re-used, still we need image-centered
shooting.

3. Inverse ray-shooting

Inverse-ray-shooting: pros and cons

Pros:

* Individual rays require few operations
« Can be implemented on GPUs

« Magnification maps can be re-used

* Incorporates limb darkening

Cons:
« Large number of rays (scales as the area)

* Denser sampling required for smaller sources
* For non-static lenses, maps cannot be re-used

4. Contour Integration

Contour Integration Concept

« Contour integration concept:
The area enclosed in a curve is expressed by a simple
contour integral on the boundary.

(Schramm & Kayser, 1987; Dominik 1995; Gould & Gaucherel 1997;
Dominik 1998; VB 2010)

We only need to find the boundaries of the images

A surface integral becomes a one-dimensional integral

In principle this is much faster and very elegant

In practice, a lot of work is required to keep everything
under control.

4. Contour Integration

Green’s Theorem

« Green’s theorem: §(L,dx, + L,dx,)= dxdx(aLz_alﬂ)
j; 17441 282 j;f 17442

dx; dx,

Note 1: d/is the counterclockwise boundary of /.
Note 2: Green’s theorem is the two 2-d specification of Stokes’ theorem.

* |f we want the area of the domain 7 we must choose
0L, oL\ _,
dx, dx,

 Possible choices for (L, L,) are (-x,,0), (0,x,), (-x,,x,)/2.

* Then the line integral takes the %, 4
equivalent forms

A=—:;f;x2dx1 =fx1dx2 =%fXAdx

ol ol

v

4. Contour Integration

From source to image boundaries

« Parameterization of the source boundary:

cosd 0 Aﬁ
Y=Yo+ 0 . < =0+ pse
siné

* After inversion of the lens equation, for each 6. we get 3 or
S points z;; lying on the boundaries of the ima%es.

)

* We need to associate the roots z at step 1 with the roots
z,,;0f the step 1 -1.

4. Contour Integration

Reconstruction of image boundaries

* We need to associate the roots x; ; at step i with the roots
x;;;Of the step i-1.

* The simplest way is to use the least distance criterium.
« Only same parity solutions can be associated.

X, 27 Xioom Xiom Xioomw Xiop

X;onr X Xioaom X Xy

l e e

X; 4 X; B X;c X; D X, E

4. Contour Integration

Reconstruction of image boundaries

* If two new images are created at step i, we can recognize
them as the last two unmatched roots.

 The same can be done at destruction of two images.

« We must keep track of pairing between image boundaries
when they are created or destroyed (see next).

4. Contour Integration

Reconstruction of image boundaries

* If two new images are created at step i, we can recognize
them as the last two unmatched roots.

X;io0 Xiom Xioom

X;ionr X Xioum

l — T

X; 4 X; B Xic Xip Xig
 The same can be done at destruction of two images.

« We must keep track of pairing between image boundaries
when they are created or destroyed (see next).

4. Contour Integration

Contour integration by polygonal

* The trapezium approximation gives the area of the
polygonal defined by our image boundary sample

n-1
A= fXAdX éll_ (Xz+l+X)A(Xz‘+1_xi)=lzxi/\xi+l

x2 A

* Typically, the area is underestimated.
... wWith some exceptions.

4. Contour Integration

Contour integration by polygonal

* We must multiply the contour integrals by the parities of
the boundaries:

n-1

Q+ A; = %pll=ox

Q _ For creation/destruction
cases, we need to add a
connection term.

(Xfirst,— A Xfirst,+) for creation

N [— N[—

(Xlast,+ A Xlast,—) for destruction

4. Contour Integration
Summing up...

Steps in contour integration:

* Run a root finder routine for each point in the source
boundary.

» At each step you must put the roots in the correct image
boundary (least distance criterium) and keep track of
created and destroyed pairs.

 Calculate the contour integral by polygonal approximation
for each boundary.

« Sum up the contour integrals with the correct parity and
add a connection term for each creation/destruction.

4. Contour Integration

Order of the error

Let us estimate the order of the error

» At each step, the contribution of the interval A6 to the

contour integral is
1 1 0, +A0

A, =— [x,andx, == ([x,AX,dO
2 1(A6) 2 7!:
* The trapezium approximation is actually

M = x,(0)7%,(6,+16)

« Expanding in powers of A8, the difference is of third order

ALY - A4, = 0(A6°)

4. Contour Integration

Parabolic correction

* We can increase the accuracy without adding new points

to the boundary.
(VB, MNRAS 1365, 2966 (2010))

* If we add the following correction to the trapezium

1 ! "
AAP) =Z[(x[A X[Xe +(x) A x] ? AH]A93
.. the residual is of fifth order
ALY + AAP — A4, = 0(A6°)

« The wedge products of the derivatives can be calculated
analytically using the lens map.

« Similar parabolic corrections can be introduced for creation/
destruction terms.

4. Contour Integration

Error control

* In all numerical computations it is fundamental to have an
estimate of the errors.
* The error estimators must be reliable but also cheap.

1

E; ;= 48‘(X1AX1)‘0 (x']/\x})|0i+MA93
_ 3 A 4(p) Agz_l
E[,i,z_zAAI (A¢92)
2
E,l3—10‘AA a6

 These work in a complementary way and are
combinations of quantities already calculated.

 Similar estimators can be introduced for creation/
destruction terms and to unveil “hidden” images.

4. Contour Integration

Error estimate at step |

* Qur error estimate for the step i is thus
E; = E (El,i,l +LE o+ El,i,3)
T

« If creation/destruction occurs at step i we add

E.+= E(C)+E(C)+E(C) n-1
* The total error in the area of aII imagesis FE = EE

« At this point we are able to check if we have reached the
target accuracy du in the magnification:

E
> <ou
TT0%
* If not, we must increase the sampling.

4. Contour Integration

Optimal sampling

We can pick the interval with the largest error

Let i:E <E; Vi
... and add another point in the sample in the middle of

this interval:

é 65+8f+1
>

Then we just need to recalculate
the contour integral and the error
estimators in the new sub-
intervals.

In this way, sampling is increased
only where needed, avoiding
useless calculations.

-

]

6 61 6 63664 65

6 67 6y

®

|

4. Contour Integration

Limb darkening

* Up to now, we have assumed a uniform brightness source.

 However, physical stars have a limb-darkened profile, e.g.
Milne’s linear law

(r)=— [l—a(l—\/ﬁ)] withi

1—61/3 joz

* In general, the source
profile is a function f(r),
normalized in such a way
that

L1}

— 09F
0.8

0.7F

| |
le/f(l")dl’ =1 T ——
0 :

1.0

4. Contour Integration

Limb darkening

* In order to account for limb darkening with
contour integration we may divide the source in

annuli.

* Each source annulus is magnified by microlensing. The
exact contribution to the total amplification IS

f dr2rf(r f ulr,ple

 In each annulus we mstead use a uniform brightness given
by the limb-darkened profile averaged over the annulus

o
o —r_

f; = F(V")—F(r"‘l) with F fdr er

M; = fi[xuiriz _lui—lril] where u; = —ferVfﬂ 4 ¢ dg

lr1

4. Contour Integration

Sampling the source profile

* Error estimators can be introduced also for limb darkening.
They are then used to drive the profile sampling.

» We start with the two extremal annuli: the boundary (r=1)
and the center (r=0).

 The new circle is put at an intermediate radius » so that
the two new annuli give the same contribution to the

source luminosity:

F(”j)‘F(f)=F(’7)‘F(rj-1)

* We keep introducing annuli s ;
until the total error falls below
the target accuracy.

4. Contour Integration

Testing

* This is a scatter plot of number of sampling points vs
magnification (target accuracy is 10-2).

300 |
250 |

200 F

n

100 |

50 F

0 [. L L L . : ' ! ' L L 1 L ' . 1 L
0 20 40 60 80

4. Contour Integration

Testing

e Summing up, at 6u=10-> we get
- a speed-up of 4 thanks to parabolic correction
- a speed-up ranging from 3 to 20 thanks to optimal
sampling
- a slow-down from 2 to 10 if we include limb darkening

* No redundant calculation thanks to error estimators!

5. VBBinaryLensing

VBBinaryLensing

= VBBinarylLensing is a code for the calculation of microlensing light

curves based on advanced contour integration (vB, MNRAS 1365, 2966 (2010)) .
= Point-Source Point-Lens

» Extended Source Point-Lens
= Binary Source Point-Lens
» Extended Source Binary Lens

Higher order effects implemented:
= Linear limb darkening
= Annual and space parallax
= Circular orbital motion

C++ library.

Tested on Windows, Linux, Mac OS.

Importable in Python.

Source code is public (but no specific standard has been adopted!).

5. VBBinaryLensing

Release of VBBinarylLensing

= VBBinarylLensing is available at
http://www.fisica.unisa.it/GravitationAstrophysics/VVBBinarylLensing.htm.

= The zip file contains:

readmeVB.txt
VBBinaryLensingLibrary.h
VBBinaryLensingLibrary.cpp
main.cpp

Makefile.dat
howtopython.txt

OB151212coords.txt
satellitel.txt

satellite2.txt

Generic introductory information

C++ header

C++ source

Sample code with examples and
instructions.

Example of a makefile (courtesy of Zhu)
Instructions for wrapping the library in
Python code (courtesy of Hundertmark)
Sample coordinate file for an event
(used in the examples in main.cpp)
Table for the positions of a satellite for
space parallax calculation (Spitzer)
Same for Kepler.

5. VBBinaryLensing
Example of use

#include <stdio.h>
#include “VBBinarylLensingLibrary.h”

int main|()

{
VBBinaryLensing VBBL;

double Mag,s,q,yl,y2,Rs,accuracy;
s=0.8; //separation

gq=0.1; // mass ratio

yl=0.01; // source position
y2=0.3;

Rs=0.01; // source radius

accuracy=l.e-2; // Required accuracy of the result
Mag=VBBL.BinaryMag(s,q,yl,y2,Rs,accuracy) ;

printf ("Magnification = %$1£f\n" 6 Mag) ;

return 0;

Contour integration: pros and cons

« Contour integration is a very elegant way to calculate the
microlensing magnification.

Cons:
« Complicated!
» Limb darkening comes at a substantial cost.

Pros:
* 1-d integration instead of 2-d integration (much faster!)

» Faster on small sources
* Only public code available, with large feedback from the

community.

Microlensing computation: outlook

The huge data flow from WFIRST will require very high
performance for microlensing calculations.
Multiple systems likely to show up.

Inverse-ray-shooting has already been implemented for
triple and muiltiple lenses.

Contour integration has never been tried beyond binary
lensing so far.

There is still room for optimizations, speed-up, parallelization
on different codes.
New ideas are always welcome.

