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•  Our purpose is to calculate microlensing light curves 

•  … that is the magnification of a given source that passes 
behind a given binary lens. 

Our goal 
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•  For a given source position and size and for a given lens 
model, we need to calculate the magnification factor 
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•  We must find the images and calculate their area. 

Our goal 
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Summary 

•  Point-source magnification (Solving the lens equation) 

•  Inverse ray-shooting 

•  Finite-source approximations (Quadrupole and Hexadecapole) 

•  Contour integration 

•  In order to reach this goal, we will take several steps: 

•  Full calculations 

•  VBBinaryLensing 



•  Let us use complex notations (Witt 1990), in a frame 
centered on the lower mass object: 

Lens equation 
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1. Point-source magnification 

•       can be eliminated using the conjugate equation. 
•  We end up with a fifth order polynomial equation 
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•  Starting from an arbitrary initial condition z0, we can find a 
root of a nth degree polynomial using Laguerre’s method: 

Finding the roots 

•  Once we have the first root z1, we can divide the original 
polynomial by (z-z1) and find the next root. 
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•  After all roots have been found on the reduced polynomials, 
they must be “polished” using the original full polynomial. 

•  Numerical Recipes implements this algorithm by zroots 
and laguer (Press et al.) 

•  An optimized root finding algorithm was published by 
Skowron and Gould (2012). 
 http://www.astrouw.edu.pl/~jskowron/cmplx_roots_sg  

1. Point-source magnification 



Point-source magnification 
•  Not all roots of p(z) are images.  

They must be checked with the original lens equation. 
•  When the source is outside the caustics, two roots are 

spurious and must be discarded. 

•  For each image we can calculate the magnification by the 
inverse Jacobian 
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•  The magnification of a point-source by a binary lens is then 
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1. Point-source magnification 



Finite-source effect 
2. Finite-source approximations 

•  We know that binary lenses have extended caustics where 
the magnification diverges. 

•  Finite source effects show up much more often than in the 
single lens case. 

•  Direct integration in the 
source plane is extremely 
unstable due to divergences. 

•  Alternative algorithms 
needed. 
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Quadrupole and Hexadecapole 
•  Far from caustics, we can Taylor expand the magnification 

and take limb darkening into account 
 (Pejcha & Heyrovsky 2007; Gould 2008; Cassan 2017) 
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•  The coefficients can be obtained by averaging the 
magnification calculated on few points on the boundary: 

•  Quadrupole:  += ,
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•  Hexadecapole:  
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2. Finite-source approximations 



Validity range 
ρ = 0.01 
Accuracy = 0.01 

ρ = 0.001 
Accuracy = 0.01 

o  Point-source valid 
n  Quadrupole valid 
n  Hexadecapole valid 
n   Full calculation needed 

2. Finite-source approximations 



Validity range 
ρ = 0.01 
Accuracy = 0.01 

o  Point-source valid 
n  Quadrupole valid 
n  Hexadecapole valid 
n   Full calculation needed 

ρ = 0.1 
Accuracy = 0.01 

2. Finite-source approximations 



Inverse ray shooting 
3. Inverse ray-shooting 

•  For each point in the lens plane z, the lens 
map gives the position ζ in which a source 
should lie in order to have an image in z. 
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•  By scanning the whole lens plane, we can find all images. 
•  The area of the images is proportional to the number of 

rays landing at the source. 

•  Every ray requires little computation. 
•  Large numbers of rays needed to be accurate. 

z ζ 

•  Limb darkening obtained by weighing rays by the source 
brightness at landing point. 



Magnification maps 
3. Inverse ray-shooting 

•  A uniform scansion of the lens plane results in a magnification 
map in the lens plane. (Wambsganns 1992, 1997) 

•  This can be re-used for 
any source trajectories on 
the same lens model. 

•  A broad search in the 
parameter space is 
cheap for fixed s and q. 



Image-centered ray-shooting 
3. Inverse ray-shooting 

•  First solve the lens 
equation for the 
center of the 
source. 

•  Then shoot rays 
around to get all 
the images 
(Bennett & Rhie 1996; 
Bennett 2010) 

•  Polar coordinates 
help diminish the 
number of rays. 



Contours for driving ray-shooting 
3. Inverse ray-shooting 

•  For high-magnification events, ray 
shooting can be limited to an annulus 
around the Einstein ring 
(Dong et al. 2006) 

•  Light rays can be collected in 
hexagonal pixels 

•  Check pixels instead of rays 
(Dong et al. 2009) 

•  Otherwise, the regions in which to 
shoot rays can be defined by the 
boundaries of the images of a circle 
larger than the source. 



Inverse-ray-shooting on GPUs 
3. Inverse ray-shooting 

•  The single ray shot is simple 
enough to be parallelized on 
GPUs. 

•  Joe Ling (NZ) has developed a fast 
working code for inverse-ray 
shooting on GPUs.  

•  Huge magnification maps can be generated quite rapidly. 
•  However, if they are not re-used, still we need image-centered 

shooting.  



Inverse-ray-shooting: pros and cons 
3. Inverse ray-shooting 

Pros: 
•  Individual rays require few operations 
•  Can be implemented on GPUs 
•  Magnification maps can be re-used 
•  Incorporates limb darkening 

Cons: 
•  Large number of rays (scales as the area) 
•  Denser sampling required for smaller sources 
•  For non-static lenses, maps cannot be re-used 



•  Contour integration concept:  
The area enclosed in a curve is expressed by a simple 
contour integral on the boundary. 

•  We only need to find the boundaries of the images 

•  A surface integral becomes a one-dimensional integral 

•  In principle this is much faster and very elegant 
•  In practice, a lot of work is required to keep everything 

under control. 

Contour Integration Concept 
4. Contour Integration 

 (Schramm & Kayser, 1987; Dominik 1995; Gould & Gaucherel 1997; 
Dominik 1998; VB 2010) 



•  Green’s theorem:  ( ) ∫∫∫ ⎟⎟
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 Note 1:  ∂I is the counterclockwise boundary of I. 
 Note 2: Green’s theorem is the two 2-d specification of Stokes’ theorem. 

Green’s Theorem 

•  If we want the area of the domain I we must choose  
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•  Possible choices for (L1,L2) are (-x2,0), (0,x1), (-x2,x1)/2.  
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•  Then the line integral takes the 
equivalent forms 
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x2 

4. Contour Integration 



•  Parameterization of the source boundary: 

From source to image boundaries 
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4. Contour Integration 

•  After inversion of the lens equation, for each θi we get 3 or 
5 points zi,I lying on the boundaries of the images. 
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•  We need to associate the roots zi,I at step i with the roots 
zi-1,I of the step i -1. 



Reconstruction of image boundaries 
•  We need to associate the roots xi,I at step i with the roots 
xi-1,I of the step i -1. 

•  The simplest way is to use the least distance criterium. 
•  Only same parity solutions can be associated. 
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4. Contour Integration 



Reconstruction of image boundaries 

•  The same can be done at destruction of two images. 

•  If two new images are created at step i, we can recognize 
them as the last two unmatched roots. 

•  We must keep track of pairing between image boundaries 
when they are created or destroyed (see next). 
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4. Contour Integration 



Reconstruction of image boundaries 

•  The same can be done at destruction of two images. 

•  If two new images are created at step i, we can recognize 
them as the last two unmatched roots. 
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•  We must keep track of pairing between image boundaries 
when they are created or destroyed (see next). 

4. Contour Integration 



Contour integration by polygonal 
•  The trapezium approximation gives the area of the 

polygonal defined by our image boundary sample 
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•  Typically, the area is underestimated. 
•  … with some exceptions. 

4. Contour Integration 



Contour integration by polygonal 
•  We must multiply the contour integrals by the parities of 

the boundaries: 
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- •  For creation/destruction 
cases, we need to add a 
connection term. 
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4. Contour Integration 



Summing up… 
Steps in contour integration: 
•  Run a root finder routine for each point in the source 

boundary. 
•  At each step you must put the roots in the correct image 

boundary (least distance criterium) and keep track of 
created and destroyed pairs. 

•  Calculate the contour integral by polygonal approximation 
for each boundary. 

•  Sum up the contour integrals with the correct parity and 
add a connection term for each creation/destruction. 

4. Contour Integration 



Order of the error 
Let us estimate the order of the error 

•  At each step, the contribution of the interval Δθ to the 
contour integral is 

•  The trapezium approximation is actually 

•  Expanding in powers of Δθ, the difference is of third order 
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4. Contour Integration 



Parabolic correction 

•  We can increase the accuracy without adding new points 
to the boundary. 
(VB, MNRAS 1365, 2966 (2010)) 

•  If we add the following correction to the trapezium 
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•  The wedge products of the derivatives can be calculated 
analytically using the lens map.  

4. Contour Integration 

•  Similar parabolic corrections can be introduced for creation/
destruction terms. 



Error control 
•  In all numerical computations it is fundamental to have an 

estimate of the errors. 
•  The error estimators must be reliable but also cheap. 
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•  These work in a complementary way and are 
combinations of quantities already calculated. 

4. Contour Integration 

•  Similar estimators can be introduced for creation/ 
destruction terms and to unveil “hidden” images. 



Error estimate at step i 
•  Our error estimate for the step i is thus 
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•  At this point we are able to check if we have reached the 
target accuracy δµ in the magnification: 

•  If not, we must increase the sampling. 

4. Contour Integration 



Optimal sampling 
•  We can pick the interval with the largest error 
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•  … and add another point in the sample in the middle of 
this interval: 
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•  Then we just need to recalculate 
the contour integral and the error 
estimators in the new sub-
intervals. 

•  In this way, sampling is increased 
only where needed, avoiding 
useless calculations. 

4. Contour Integration 



Limb darkening 
•  Up to now, we have assumed a uniform brightness source. 

•  In general, the source 
profile is a function f(r), 
normalized in such a way 
that  
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•  However, physical stars have a limb-darkened profile, e.g. 
Milne’s linear law  
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4. Contour Integration 



Limb darkening 
•  In order to account for limb darkening with 

contour integration we may divide the source in 
annuli. 

•  Each source annulus is magnified by microlensing. The 
exact contribution to the total amplification is  
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•  In each annulus we instead use a uniform brightness given 
by the limb-darkened profile averaged over the annulus 
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4. Contour Integration 



Sampling the source profile 
•  Error estimators can be introduced also for limb darkening. 

They are then used to drive the profile sampling. 
•  We start with the two extremal annuli: the boundary (r=1) 

and the center (r=0). 
•  The new circle is put at an intermediate radius      so that 

the two new annuli give the same contribution to the 
source luminosity: 

r
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•  We keep introducing annuli 
until the total error falls below 
the target accuracy. 
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4. Contour Integration 



Testing 
•  This is a scatter plot of number of sampling points vs 

magnification (target accuracy is 10-2). 

4. Contour Integration 



Testing 
•  Summing up, at δµ=10-2 we get 

- a speed-up of 4 thanks to parabolic correction 
- a speed-up ranging from 3 to 20 thanks to optimal 
sampling 
- a slow-down from 2 to 10 if we include limb darkening 

•  No redundant calculation thanks to error estimators! 

4. Contour Integration 



VBBinaryLensing 
§  VBBinaryLensing is a code for the calculation of microlensing light 

curves based on advanced contour integration (VB, MNRAS 1365, 2966 (2010)) . 
§  Point-Source Point-Lens 
§  Extended Source Point-Lens 
§  Binary Source Point-Lens 
§  Extended Source Binary Lens 

§  C++ library. 
§  Tested on Windows, Linux, Mac OS. 
§  Importable in Python. 
§  Source code is public (but no specific standard has been adopted!). 

§  Higher order effects implemented: 
§  Linear limb darkening 
§  Annual and space parallax 
§  Circular orbital motion 

5. VBBinaryLensing 



Release of VBBinaryLensing 
§  VBBinaryLensing	is	available	at	

h"p://www.fisica.unisa.it/Gravita3onAstrophysics/VBBinaryLensing.htm.		
§  The	zip	file	contains:	

§  readmeVB.txt 	 	 	Generic	introductory	informa;on	
§  VBBinaryLensingLibrary.h 	 	C++	header	
§  VBBinaryLensingLibrary.cpp	 	C++	source	
§  main.cpp 	 	 	 	Sample	code	with	examples	and	 	

	 	 	 	 	instruc;ons.	
§  Makefile.dat 	 	 	Example	of	a	makefile	(courtesy	of	Zhu)	
§  howtopython.txt 	 	 	Instruc;ons	for	wrapping	the	library	in	

	 	 	 	 	Python	code	(courtesy	of	Hundertmark)	
§  OB151212coords.txt 	 	Sample	coordinate	file	for	an	event		

	 	 	 	 	(used	in	the	examples	in	main.cpp)	
§  satellite1.txt 	 	 	Table	for	the	posi;ons	of	a	satellite	for	

	 	 	 	 	space	parallax	calcula;on	(Spitzer)	
§  satellite2.txt 	 	 	Same	for	Kepler.	

5. VBBinaryLensing 



Example	of	use	
#include <stdio.h> 
#include “VBBinaryLensingLibrary.h” 

int main() 
{ 
   VBBinaryLensing VBBL; 

   double Mag,s,q,y1,y2,Rs,accuracy; 
   s=0.8; //separation 
   q=0.1; // mass ratio 
   y1=0.01; // source position 
   y2=0.3;  
   Rs=0.01; // source radius 

   accuracy=1.e-2; // Required accuracy of the result 
   Mag=VBBL.BinaryMag(s,q,y1,y2,Rs,accuracy); 

   printf("Magnification = %lf\n",Mag); 
 
   return 0; 
}   

5. VBBinaryLensing 



Contour integration: pros and cons 
•  Contour integration is a very elegant way to calculate the 

microlensing magnification. 

Pros: 
•  1-d  integration instead of 2-d integration (much faster!) 
•  Faster on small sources 
•  Only public code available, with large feedback from the 

community. 

Cons: 
•  Complicated! 
•  Limb darkening comes at a substantial cost. 



Microlensing computation: outlook 

•  Inverse-ray-shooting has already been implemented for 
triple and multiple lenses. 

•  Contour integration has never been tried beyond binary 
lensing so far. 

•  There is still room for optimizations, speed-up, parallelization 
on different codes. 

•  New ideas are always welcome. 

•  The huge data flow from WFIRST will require very high 
performance for microlensing calculations. 

•  Multiple systems likely to show up. 


