

Coronagraphic Imaging with WFIRST

Nikole K. Lewis WFIRST FSWG Member Space Telescope Science Institute

http://wfirst.gsfc.nasa.gov/gallery-movies.html

WFIRST Science

Internal Coronagraph Basics

WFIRST CGI

- Brown lines in upper right: Speckle Control via deformable mirrors
- Red lines in lower left: Low Order WaveFront Sensor (LOWFS) and control of tip-tilt, focus, astigmatism, and coma
- Select combinations of masks to make an SPC or HLC coronagraph for various wavelength bands

WFIRST CGI

JPL

- Drawing of the coronagraph optical bench layout
 - Beam from telescope enters in the middle of the table

CGI Performance

- Technology
 Demonstration
- Broadband Imaging (430-970 nm)
- R~70 spectroscopy (600-970 nm)
- Polarimetric Capabilities

Spergel et al (2015), WFIRST-AFTA 2015 Report

High-Level Science Goals: Planets

- Detect planets spanning a range of physical properties, probing populations beyond the limits of current surveys
- Use photometry to provide initial discriminators for the nature of the planet and explore planetary diversity
- Use spectroscopy to explore mass-metallicity relationship and cloud/haze formation

High-Level Science Goals: Disks

- Directly image and resolve scattered light from exo-zodi
- Measure optical properties of disk/zodi to put constraints on grain properties
- Determine spatial disk structure and link to planet formation
- Understand diversity of disk/zodi systems through multi-band photometry

Planet Detection: Is There a Planet in My Data?

Planet Search Mode

Hybrid Lyot Mode

Figure Credit: JPL WFIRST CGI Team

Post Processing

RDI

Figure from L. Pueyo (STScI)

Techniques and Lessons Learned From Ground and Space

• See Talk by Mawet:

http://nexsci.caltech.edu/workshop/2016/ Sagan2016_mawet_v2.pdf

• See Talk by Pueyo:

http://nexsci.caltech.edu/workshop/2016/ Sagan2016Pueyo2.pdf

Planet Characterization: What Kind of Planet is in My Data?

WFIRST CGI Exoplanet Yields

Figure Credit: D. Savransky/Eric Neilsen

Planets Around Other Targets: WFIRST Bands

Cahoy et al (2010)

Super-Earths in Reflected Light

Morley et al. (2015)

Planet Spectroscopy Mode

Shaped Pupil Spectroscopy Mode

The IFS uses 3 18% bands to produce an R=70 spectra from 600 to 970 nm

Figure Credit: JPL WFIRST CGI Team

Lupu et al. (2016)

Atmospheric Retrieval Studies

- Methane Abundance
- Surface Gravity
- Cloud/Haze Properties

Lupu et al. (2016)

Orbital Phase Matters!!!

Lewis et al, in prep

Orbital Phase Matters

Cahoy et al (2010)

Disk Detection and Characterization

Exozodi

Disk is detected at low SNR in multiple resolution elements, Planets b (2.1 AU) and c (3.6 AU) are easily seen

Binned SNR map (peak SNR=15)

47 UMa + 30 zodi

Gaps in Disks

Original Scene

Figures from John Debes (STScI)

Original Scene as Viewed with WFIRST CGI

WFIRST+Starshade

Studying Other Worlds with the Help of a Starshade

Opportunities

<section-header><section-header>

Turnbull SIT Data Challenges

Dr. Margaret Turnbull, SETI Institute mturnbull@seti.org Carl Sagan Center for the Study of Life in the Universe

WFIRST Exoplanet Data Challenge 2016

<u>Goal is to Conduct "Blind" Spectral Retrieval Studies</u>, including In-House and Community Data Challenges.

- use assembled spectra and cubes for "blind" studies
- test extraction algorithms to find everything
- test modelers' ability to retrieve own models
- test inter-team differences
- include placebos and non-planets
- map science yield vs spectral resolution and SNR
- start with noisey spectra and add complexity gradually
- FIRST DATA CHALLENGE: AUGUST 2016

First Spectral Retrieval Challenge

1.Opening/Closing Dates: August 15 – November 15, 2016

Informational Telecons:

Monday July 25, at 3PM EDT = 2pm CDT = 1pm MDT = 12pm PDT

and

Thursday July 28, at 2PM EDT = 1PM CDT = 12pm MDT = 11am PDT

- Distribute several planet spectra with range of possible planet parameters (temperature, clouds, H2O, CH4, NH4) – both for known RV systems and discovery planets (Hu, Cahoy, Lewis)
- 3. Include appropriate stellar spectra for division
- 4. Add instrumental noise
- 5. Explore SNR at 5-20, R from 25 70
- 6. Distribute via IPAC
- 7. Interpret findings in terms of parameters relevant to the SRD

Online Resources

http://wfirst.gsfc.nasa.gov

Wide Field Infrared Survey Telescope WFIRST at STScI

http://www.stsci.edu/wfirst

Wide-Field Infrared Survey Telescope

HOME NEWS SCIENCE DOCUMENTS SIMULATIONS COMMUNITY PUBLICATIONS CONTACT

https://wfirst.ipac.caltech.edu