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Our goal: introduction to Bayesian methods

o Likelihoods
@ Priors: conjugate priors, “non-informative” priors

@ Posteriors

Related topics covered this week

Markov chain Monte Carlo (MCMC)
Selecting priors

Bayesian modeling comparison

Hierarchical Bayesian modeling

Some material is from Tom Loredo, Sayan Mukherjee, Beka Steorts



Likelihood Principle

All of the information in a sample is contained in the likelihood
function, a density or distribution function.




Likelihood Principle

All of the information in a sample is contained in the likelihood
function, a density or distribution function.

@ The data are modeled by a likelihood function.



Likelihood Principle

All of the information in a sample is contained in the likelihood
function, a density or distribution function.

@ The data are modeled by a likelihood function.

o Not all statistical paradigms agree with this principle.



Likelihood functions

Consider a random sample of size n = 1 from a Normal(u = 3,
o=2) X1~ N(32)

e Probability density function (pdf)
— the function f(x, @), where 0 is fixed and x is variable

The data are drawn from this
o Likelihood

— the function f(x, 6), where 6 is variable and x is fixed



Likelihood functions

Consider a random sample of size n = 1 from a Normal(u = 3,
o=2): X1~ N(3,2)

e Probability density function (pdf)

— the function f(x, ), where ¢ is fixed and x is variable
e Likelihood

— the function f(x, 6), where € is variable and x is fixed
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e Consider a random sample of size n = 50 (assuming independence,
and a known o): Xi,..., Xs0 ~ N(3,2)
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e Consider a random sample of size n = 50 (assuming independence,
and a known o): Xi,..., Xs0 ~ N(3,2)
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Likelihood Principle

All of the information in a sample is contained in the likelihood
function, a density or distribution function.

@ The data are modeled by a likelihood function.

o How do we infer 67



Maximum likelihood estimation

The parameter value, 8, that maximizes the likelihood:

6 = meaxf(xl,...,x,,,Q)

“Minimizing x? statistic’ (under the Gaussian assumption)
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Bayesian framework

Classical or Frequentist methods for inference consider 6 to be
fixed and unknown

— performance of methods evaluated by repeated sampling
— consider all possible data sets

Bayesian methods consider 6 to be random
— only considers observed data set and prior information



Bayes’ Rule

Let A and B be two events in the sample space. Then

P(AB)  P(B|A)P(A)

PAIE) =By = )
Note P(B | A) = S5 — P(AB) = P(B | A)P(A)

— It is really just about conditional probabilities.

Sample space




Posterior distribution

Likelihood fP:io\r
()~ = TO10)7(0) x| 0)(6)

s

f(x) - fe dof(x | 0)m(6)

x f(x | 0)m(6)

@ The prior distribution allows you to “easily” incorporate your
beliefs about the parameter(s) of interest

@ Posterior is a distribution on the parameter space given the
observed data



Gaussian example

Consider y1., = y1,...,yn drawn from a Gaussian(u, o), i
unknown

—i=w)?
Likelihood: f(y1.n | 1) = T1; (\/Q;Tezazl)

Prior: 7(p) ~ N(po, 00)
Posterior:

7T(u | Yl:n) X f( Yl:n | M)W(/‘L)

— )2 1 —(r—pq)
—H( ot ) o 2
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~ N(p1,01)
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w2 (345)
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e Data: yi,...

Density
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y Y4 ~ N(M = 37 o
e Prior: N(uo = —3,00 =5)
@ Posterior: N(pu; = 1.114,07 = 0.981)

—— Likelihood
— — Prior
---- Posterior
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e Data: y1,...,ya~ N(u=3,0=2), y =1.278
@ Prior: N(po = —3,00=1)
@ Posterior: N(u; = —0.861,07 = 0.707)
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o Data: yi,..., Y200 ~ N(,U, =3,0 = 2), ¥y =2.999
@ Prior: N(po = —3,00=1)
@ Posterior: N(u; = 2.881,07 = 0.140)
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Example 2 - on your own

Consider the following model:
Y |6~ U(0,0)
0 ~ Pareto(«, 3)

o m(0) = Pl(s,50)(0)
where I, py(x) = 1 if a < x < b and 0 otherwise

e Find the posterior distribution of 6 | y
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Prior distribution

The prior distribution allows you to “easily” incorporate your
beliefs about the parameter(s) of interest

If one has a specific prior in mind, then it fits nicely into the
definition of the posterior

But how do you go from prior information to a prior distribution?

And what if you don't actually have prior information?
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Choosing a prior

Informative/Subjective prior: choose a prior that reflects our
belief/uncertainty about the unknown parameter

- Based on experience of the researcher from previous studies,
scientific or physical considerations, other sources of information

* Example: For a prior on the mass of a star in a Milky Way-type
galaxy, you likely would not use an infinite interval

Objective, non-informative, vague, default priors
Hierarchical models: put a prior on the prior

Conjugate priors: priors selected for convenience

16



Conjugate priors

The posterior distribution is from the same family of distributions
as the prior

We saw this with a Gaussian prior on p resulted in a Gaussian
posterior 11 | Yi.p

(Gaussian priors are conjugate with Gaussian likelihoods resulting
in a Gaussian posterior)
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Some conjugate priors

Normal - normal: normal priors are conjugate with normal
likelihoods

Beta - binomial: beta priors are conjugate with binomial
likelihoods

Gamma - Poisson: gamma priors are conjugate with Poisson
likelihoods

Dirichlet - multinomial: Dirichlet priors are conjugate with
multinomial likelihoods

18



Beta-Binomial

@ Suppose we have an iid sample, xi, ..., x,, from a Bernoulli(6)
X =1, with probability 6
X =0, with probability 1 — 6

Let y =>" ,x = y is a draw from a Binomial(n, 6)
Ly =) =)ot - o+

We want the posterior distribution for
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Beta-Binomial

We have a binomial likelihood, and need to specify a prior on 6
Note that 6 € [0, 1]

If prior w(0) ~ Beta(«, ), then posterior
m(0 [ y) ~ Beta(y + a,n -y + f3)

The beta distribution is the conjugate prior for binomial
likelihoods
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Beta - Binomial posterior derivation
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Beta priors and posteriors

Mo+ B)
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Beta priors and posteriors

Mo+ B)
01 8) = Fayrm)

00471(1 _ H)ﬂfl

Density

T
Post(1,1) |
Prior(1,1) |
Post(3,2) |
Prior(3,2) |
Post(1/2, 112)
Prior(1/2,112)
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Poisson distribution

e AN
Y ~ Poisson(A) = P(Y =y) = —
y!
° -.\ \l @ Mean = Variance = \
= @ Bayesian inference on \:

Probability
0.10

Y | A ~ Poisson(\)

0.05

What prior to use for A\?

0 5 10 15

0.00

X
Astronomical example

* Photons from distant quasars, cosmic rays

For more details see Feigelson and Babu (2012), Section 4.2
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Gamma density

Density

fly)= S —y*te ™,y >0

05

T(a)

e Often written as Y ~ '(a, )

@ « > 0 (shape parameter), 5 > 0 (rate parameter)
Note: sometimes 6 =1/ is used instead

e Mean = «/f3, Variance = a/3?

e (1, 3) ~ Exponential(3), I'(d/2,1/2) ~ X3
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Poisson - Gamma Posterior

flyin | A) =11 eV ]ffn’\z' L (Likelihood)
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@ The gamma distribution is the conjugate prior for Poisson
likelihoods
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Poisson - Gamma Posterior

illustrations

Density
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Hierarchical priors

A prior is put on the parameters of the prior distribution = the
prior on the parameter of interest, ¢, has additional parameters

Y |0,v~f(y|0,7) (Likelihood)
© |y~ m(d|~) (Prior)
I~ ¢(y) (Hyper prior)

It is assumed that ¢(7) is fully known, and ~ is called a hyper
parameter
More layers can be added, but of course that makes the model

more complex — posterior may require computational techniques
(e.g. MCMCQ)
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Simple illustration

Y | (1, &) ~ N(,1) Likelihood

| 6 ~ N(6,2) Prior
¢ ~ N(0,1) Hyperprior

Maybe we want to put a hyperhyperprior on ¢?

Posterior
wlY o< f(y | p,@)m(p | ¢)ma(o)
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Non-informative priors

What to do if we don't have relevant prior information? What if
our model is too complex to know what reasonable priors are?

@ Desire is for a prior that does not favor any particular value on
the parameter space

* Side note: some may have philosophical issues with this (e.g.
R.A. Fisher, which lead to fiducial inference)

@ We will discuss some methods for finding “non-informative
priors.” It turns out these priors can be improper (i.e. they
integrate to oo rather than 1), so you need to verify that the
resulting posterior distribution is proper
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@ Example of improper prior with proper posterior:
Data: x1,...,x, ~ N(6,1)
(Improper) prior: m(0) ox 1
(Proper) posterior: (6 | x1.n) ~ N(y,n~/?)

@ Example of improper prior with improper posterior
Data: x1,...,X, ~ Bernouilli(0), y = > xi ~ Binomial(n,0)
(Improper) prior: m(#) ~ Beta(—1, —1)
(Improper) posterior: (8 | x1.,) o< ¥ ~1(1 — @)"—¥~1
This is improper for y =0 or n

If you use improper priors, you have to check that the
posterior is proper
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Uniform prior

This is what many astronomers use for non-informative priors, and
is often what comes to mind when we think of “flat” priors

0 ~ U(0,1)

Density

What if we consider a transformation of 6, such as #2?

31



Uniform prior

0 ~ U(0,1)

Prior for 62:

Density

0

— Notice that the above is not Uniform - the prior on 62 is
informative. This is an undesirable property of Uniform priors. We
would like the “un-informativeness” to be invariant under

transformations.
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There are a number of reasons why you may not have prior
information:

@ your work may be the first of its kind

@ you are skeptical about previous results that would have
informed your priors

© the parameter space is too high dimensional to understand
how your informative priors work together
[ Y

If this is the case, then you may like the priors to have little effect
on the resulting posterior
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Objective priors

o Jeffreys' prior
Uses Fisher information

@ Reference priors

Select priors that maximize some measure of divergence
between the posterior and prior (hence minimizing the impact
a prior has on the posterior)

“The Formal Definition of Reference Priors” by Berger et al. (2009)

More about selecting priors can be found here: Kass and
Wasserman (1996)
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Jeffrey’s Prior

m4(0) o< v/ [1(0)]

where 1(#) is the Fisher information

1(0) = (je og L(6] ¥ ))2

d2
- <d02 log L(0 | Y)) (for exponential family)

Some intuition?

I(8) is understood to be a proxy for the information content in the
model about & — high values of I(#) correspond with likely values
of #. This reduces the effect of the prior on the posterior

Most useful in single-parameter setting; not recommended with
multiple parameters

For more details see Robert (2007): “The Bayesian Choice”
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Exponential example

v 1 6)=be"
Calculate the Fisher Information:
log(f(y | 0)) = |0g( ) — by
ilog( lo)=5-y
S log(F(y | 0) = —

—EZL log(f(y |0)) = &
Hence,
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Exponential example, continued

1

Suppose we consider ¢ = f(0) = 0> = 0 =+/¢
do _ 1

dé — 2%
Hence, 7/,(¢) = m,(V/9) ‘g—g = ﬁﬁ o é
1
7 x =
5(0) 5

We see here that Jeffreys prior is invariant to the transformation

£(0) = 62
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Binomial example

FY | 0) = (;)gyu — )y
Calculate the Fisher Information:
log(f(Y | 0)) = log((}))) + y log(6) + (n — y) log(1 — 6)
3 108(F(Y 1)) = § - 47
2 log(F(Y 1 0)) =~ — =
— Note that E(y) = nf
2 n n—n n n

—E gz log(f(Y ] 0)) = G + ((1795)2) =917 1T0 = g9

Hence,

WJ(G) X 9(1 — 9)

Beta(% %)
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m(0) x 072(1 — )2

Density
1.0 15 2.0

0.5

0.0

—— Beta(1/2, 1/2)
— = Beta(1, 1)

0.0 0.2 0.4 0.6 0.8 1.0




If we use Jeffreys' prior m;(6) 9_%(1 — 9)_%, what is the
posterior for 6 | Y7

7(0] Y) o (0)6Y(1—0)" Yo 2(1—0) 2
x 0¥(1—0)"Y~2(1—0) 2
o 9y71/2(1 _ 0)n7y71/2

~ Beta(y +1/2,n—y +1/2)

The posterior distribution is proper (which we knew would be the
case since the prior is proper)

It is just a coincidence that the Jeffreys prior is conjugate.
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Gaussian with unknown ;; - on your own

(y—n)?

FY | p,0%) ox e 202
Calculate the Fisher Information:
log(£(Y | ) = — 54"
ey (v ] 0)) =204 = 2
& |0g( (Y10))=—5=

EL log(f(Y | 0)) = %
Hence,

my(p) o< 1
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Inference with a posterior

Now that we have a posterior, what do we want to do with it?

@ Point estimation:

o posterior mean: < 6 >= [ dOp(f | Y, model)
o posterior mode (MAP = maximum a posteriori)

o Credible regions: posterior probability p that 6 falls in regions R
p=P(0cR|Y, model) = [,dOp(0 | Y, model) highest posterior
density (HPD) region

@ Posterior predictive distributions: predict new y given data y
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@ Posterior predictive distributions: predict new y given data y

F@.y) _ Jf(3.y.0)d0 _ [£(7]y.0)f(y,6)do
(¥) f(y) f(y)

;
/f(y!y, (6 | y)do
A

f(y]0)r(6]y)do (ify and y are independent)

f(71y)
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Confidence intervals # credible intervals

A 95% confidence

interval is

based on repeated sampling of

datasets -

about 95%

of the

confidence intervals will capture

the true parameter value

a Population distribution

N

u

Sample means with 95% ClI

[

Parameters are not random

http://www.nature.com

A 95% credible interval is
defined using the posterior

Density

distribution
< Posterior
o
@ |
o
S 95% Prob
g 4
e |
o

Parameters are random
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Summary

We discussed some basics of Bayesian methods

Bayesian inference relies on the posterior distribution

Likelihood Prior
Data —N— =

~—~ _ f(x]0)-7(0)
(9| X )_ f(X)

™

There are different ways to select priors: subjective, conjugate,
“non-informative”

Credible intervals and confidence intervals have different
interpretations

We'll be hearing a lot more about Bayesian methods throughout
the week.

45



Summary

We discussed some basics of Bayesian methods

Bayesian inference relies on the posterior distribution

Likelihood Prior
Data s NN

~—~ _ f(x]0)-7(0)
(9| X )_ f(X)

™

There are different ways to select priors: subjective, conjugate,
“non-informative”

Credible intervals and confidence intervals have different
interpretations

We'll be hearing a lot more about Bayesian methods throughout
the week.

Thank you!

45



Bibliography |

Berger, J. O., Bernardo, J. M., and Sun, D. (2009), “The formal definition of
reference priors,” The Annals of Statistics, 905-938.

Feigelson, E. D. and Babu, G. J. (2012), Modern Statistical Methods for
Astronomy: With R Applications, Cambridge University Press.

Kass, R. E. and Wasserman, L. (1996), “The selection of prior distributions by
formal rules,” Journal of the American Statistical Association, 91,
1343-1370.

Robert, C. (2007), The Bayesian choice: from decision-theoretic foundations to
computational implementation, Springer Science & Business Media.

46



