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. . . now what?!

You’ve found planets in your data (or not) . . .



Why Astrostats?
• This week: a sample of the richness of our research problems 

and the wide range of statistical tools to be considered.  Stats + 
exoplanets: a burgeoning field!  Follow your confusion - you will 
be among the first to apply new tools to the BIG data ahead! 

• Stats is not something you do after the physics, or to supplement 
the physics . . . it is what ENABLES the physics!!  Stats gives us 
efficient tools to explore the data and tells us how to deal with 
uncertainty so we can make accurate inferences and 
conclusions. (Cosmologists understand this, but many galactic, 
stellar, exoplanet astronomers still don’t.) 

• We come from a culture of spherical cows: many astronomers 
choose to ignore (or don’t fully understand) the assumptions that 
underly the (few) statistical tools they use . . . and that can get us 
into trouble (retracted detections, biased results).  Join me in 
showing our field how we can do better science!



Observed Exoplanet Population
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Lots of (hetereogenous) planet detections ≠ an unbiased sample ready to compare to theory

What’s missing from this plot?
• How easy is it to find a planet at a 

given Mpl, P, Mstar? (Detection bias; 
depends on detection method) 

• How well are Mpl, P known? 
(Measurement uncertainty; mass-
radius relation) 

• What kinds of planets aren’t on here 
because their stars weren’t 
observed in the first place? 
(Selection bias)

Harder

Harder

Harder?

Need more advanced statistical methods to help us!



Hierarchical Modeling
is a statistically rigorous way  
to make scientific inferences 

about a population (or specific object) 
based on many individuals (or observations).

Frequentist multi-level modeling techniques exist,  
but we will discuss the Bayesian approach today.

Frequentist: variability of sample
(If __ is the true value, what fraction of many 
hypothetical datasets would be as or more 
discrepant from __ as the observed one?)  

Bayesian: uncertainty of inference
(What’s the probability that __ is the true 

value given the current data?)



Understanding Bayes

x = data 
θ = the parameters of a model that can produce the data 

p() = probability density distribution of 
| = “conditional on”, or “given” 

p(θ) = prior probability  
(How probable are the possible values of θ in nature?) 

p(x|θ) = likelihood, or sampling distribution  
(Ties your model to the data probabilistically:  

how likely is the data you observed given specific θ values?)  
p(θ|x) = posterior probability 

(A “new prior” distribution, updated with information contained in the data:  
what is the probability of different θ values given the data and your model?)

Bayes’ Theorem

p(θ|x) ∝ p(x|θ) p(θ)
(straight out of conditional probability)

posterior likelihood prior

(On Tuesday we learned how 

to evaluate p(θ|x
) numerically 

with MCMC to infer θ f
rom x …) 

(But let’s get a better intuition 

for the statistical model itself.)



Applying Bayes
p(θ|x) ∝ p(x|θ) p(θ)
posterior likelihood prior

Example (1-D): Getting orbital parameters from RV data
x = 117 RV measurements

θ = orbital period (P), 
       time of pericenter (Tp), 
       eccentricity (e), 
       argument of periastron (w), 
       RV semiamplitude (K), 
       stellar jitter

Feng et al. 2015, using RUN DMC  
(Differential Evolution MCMC)  

by Nelson et al. 2014a

Model: 2-body Keplerian orbit

Model can be summarized as f(x|θ): 
Maps θ → x.

But this is NOT p(x|θ) because  
f(x|θ) is not a probability distribution!!

x

f(x|θ)



Applying Bayes
p(θ|x) ∝ p(x|θ) p(θ)
posterior likelihood prior

Example (1-D): Getting orbital parameters from RV data

θ = orbital period (P), 
       time of pericenter (Tp), 
       eccentricity (e), 
       argument of periastron (w), 
       RV semiamplitude (K), 
       stellar jitter

Model: 2-body Keplerian orbit

Model can be summarized as f(x|θ): 
Maps θ → x.

But this is NOT p(x|θ) because  
f(x|θ) is not a probability distribution!!

If use Χ2 for fitting, then you are 
implicitly assuming that:

p(xi|θ) =

where μ = f(xi|θ) 
and σ = “statistical measurement error”
i.e. you are assuming “Gaussian noise”  

(if you could redo a specific xi  
the same way many times, you’d find:)

μ

σ

x = 117 RV measurements



Applying Bayes
p(θ|x) ∝ p(x|θ) p(θ)
posterior likelihood prior

Example (2-D): Fitting a PSF to an image

x = matrix of pixel brightnesses θ = μ, σ of Gaussian  
(location, FWHM of PSF) f(x|θ) = 2-D Gaussian 

p(x|θ) = where μ = f(x|θ) and Σ = noise  
(possibly spatially correlated)

Both likelihood 
and model are 

Gaussian!!



Applying Bayes
p(θ|x) ∝ p(x|θ) p(θ)
posterior likelihood prior

Example (1-D): Getting orbital parameters from RV data

θ = orbital period (P), 
       time of pericenter (Tp), 
       eccentricity (e), 
       argument of periastron (w), 
       RV semiamplitude (K), 
       stellar jitter

Model: 2-body Keplerian orbit

Model can be summarized as f(x|θ): 
Maps θ → x.

But this is NOT p(x|θ) because  
f(x|θ) is not a probability distribution!!

Ok, now we know of one way to write p(x|θ).
What about p(θ)?

   

1) If we have a previous measurement/inference 
of that object’s metallicity, redshift, etc., use it 

with its error bars as p(θ). 
(Usually “measured” via Χ2, so p(θ) is Gaussian 
with μ = measurement and σ = error.  BUT full 

posteriors from previous analysis is better.) 
2) Choose wide, uninformative distributions for 

all the parameters we don’t know well. 
3) If analysis is analytical (vs numerical), use 

conjugate prior. 
4) Use distributions in nature from previous 

observations of similar objects.

x = 117 RV measurements



Going Hierarchical
Option #3 for p(θ):  

Use distributions in nature from previous observations of similar objects.

p(θ) = n(θ|α)/∫n(θ|α)dθ = p(θ|α)

Histograms of population properties, when normalized, can be 
interpreted as probability distributions for individual parameters:

where n(θ|α) is the function with parameters α that was fit to the histogram 
(or even the histogram itself, if you want to deal with a piecewise function!)

For example, e was part of the θ for RV fitting.  
  

One could use the dashed line (parametric 
form below) as  

p(e) = p(e|α) = n(e|α)/∫n(e|α)de

But BE CAREFUL of detection bias, 
selection effects, upper limits, etc.!!!!!!

Hogg et al. 2010

with n(e|α) = 
a bb

and α = {a=2,b=4}.



Going Hierarchical
Option #3 for p(θ):  

Use distributions in nature from previous observations of similar objects.

p(θ) = n(θ|α)/∫n(θ|α)dθ = p(θ|α)

Histograms of population properties, when normalized, can be 
interpreted as probability distributions for individual parameters:

where n(θ|α) is the function with parameters α that was fit to the histogram 
(or even the histogram itself, if you want to deal with a piecewise function!)

Population helps make inference on individual …

p(θ|x) ∝ p(x|θ) p(θ)
posterior likelihood prior

p(θ|x) ∝ p(x|θ) p(θ|α)
posterior likelihood prior

(Almost there!!)

Abstracting again ….



Going Hierarchical
. . . but what if we want to use the individuals to 

infer things (the α’s) about the population?

p(θ|x) ∝ p(x|θ) p(θ|α)
posterior likelihood prior

p(α,θ|x) ∝ p(x|θ,α) p(θ|α) p(α)
posterior likelihood prior

If you truly don’t care about the parameters for the individual 
objects, then you can marginalize over them:

p(α|x) ∝ [∫p(x|θ,α) p(θ|α) dθ] p(α) = p(x|α) p(α)
posterior likelihood prior

i.e., p(θ|α) contains some interesting physics and getting values 
for α given the data can help us understand it.



Graphically:

p(θ|x) ∝ p(x|θ) p(θ)
posterior likelihood prior

“Regular” Bayes:

p(α,θ|x) ∝ p(x|θ,α) p(θ|α) p(α)
posterior likelihood prior

Hierarchical Bayes:

Observables

Parameters

Population
Parameters

Observables

Individual 
Parameters

Tilde notation: x ~ p(x|θ) 
θ ~ p(θ)

x ~ p(x|θ,α) 
θ ~ p(θ|α) 
α ~ p(α)



Graphically:

p(θ|x) ∝ p(x|θ) p(θ)
posterior likelihood prior

p(α,θ|x) ∝ p(x|θ,α) p(θ|α) p(α)
posterior likelihood prior

“Regular” Bayes: Hierarchical Bayes:

Observables

Parameters

Population
Parameters

Observables

Individual 
Parameters

physics

physics

Conditional independence between individuals:

Even for an individual object, 
connection between parameters and 

observables can involve several layers.  
(Example: measuring mass of a planet)

Latent Variables

Mpl

RVs

spectra



HBM in Action: Model

- compositions of individual 
super-Earths (fraction of mass 
in a gaseous envelope: fenv)  

- the distribution of this 
composition parameter over 
the Kepler population (μ, σ).

Internal Structure Models

Population-wide Distributions

Likelihood

Wanted to 
understand BOTH:

Exoplanet compositions: Wolfgang & Lopez, 2015



HBM in Action: Results
Exoplanet compositions: Wolfgang & Lopez, 2015

Posterior on population parameters: Marginal composition distribution:

Width of distribution had not been previously characterized.



HBM in Action: Results
Exoplanet compositions: Wolfgang & Lopez, 2015

Posteriors on composition 
parameter fenv for 
individual planets:



A Note About Shrinkage
Hierarchical models “pool” and share the information in the 

individual data …

mean of 
distribution 

of x’s

uncertainty 
in x1 when 

analyzed by 
itself

… which shrinks individual estimates together and lowers overall RMS 
error. (A key feature of any multi-level modeling!)

uncertainty in x1 
when analyzed 
in hierarchical 

model



A Note About Shrinkage

mean of 
distribution 

of x’s

uncertainty in x1 
when analyzed 
in hierarchical 

model

uncertainty 
in x1 when 

analyzed by 
itself

Wolfgang, Rogers, 
& Ford, 2016

Shrinkage in action:

Gray = data 
Red = posteriors



Practical Considerations
1) Pay attention to the structure of your model!! 

• Did you capture the important dependencies and correlations? 
• Did you balance realism with a small number of population-level 

parameters? 

2)  Evaluating your model with the data (performing hierarchical MCMC): 
• JAGS (http://mcmc-jags.sourceforge.net; can use stand-alone binary or 

interface with R) 
• STAN (http://mc-stan.org/documentation/; interfaces with R, Python, Julia, 

MATLAB) 
• Or write your own hierarchical MCMC code 

3)  Spend some time testing the robustness of your model: if you generate 
hypothetical datasets using your HBM and then run the MCMC on those datasets, 
how close do the inferences lie to the “truth”? 

4)  Developing and validating these models takes time and is a significant result in 
and of itself: if you use or build on one in the literature, reference it!

http://mcmc-jags.sourceforge.net
http://mc-stan.org/documentation/


In Sum, Why HBM?
• Readily quantify uncertainty in model parameters, and in the 
same way we tend to ask our science questions. 

• Obtain simultaneous posteriors on individual and population 
parameters: self-consistent constraints on the physics 

• Naturally deals with large measurement uncertainties and upper 
limits (censoring) 

• Similarly, can account for selection effects *within* the model, 
simultaneously with the inference 

• Enables direct, probabilistic relationships between theory and 
observations 

• Framework for model comparison

After all, people have corrected for survey biases before without all of this work . . .



Further Reading

DeGroot & Schervish, Probability 
and Statistics 

(Solid fundamentals)  

Gelman, Carlin, Stern, & Rubin, 
Bayesian Data Analysis 
(In-depth; advanced topics) 

Loredo 2013; arXiv:1208.3036 
(Few-page intro/overview of multi-level 

modeling in astronomy) 

B.C. Kelly 2007  
(HBM for linear regression, also applied 

to quasars)

Hogg et al. 2010  
(HBM with importance sampling for exoplanet 

eccentricities) 

Morton & Winn, 2014  
(HBM for stellar spin-planet orbit obliquity) 

Foreman-Mackey et al, 2014  
(HBM for Kepler occurrence rates) 

 

Rogers 2015  
(HBM for rocky-gaseous transition) 

Shabram et al. 2016  
(full HBM for short-period eccentricity 

distribution) 

Wolfgang, Rogers, & Ford 2016  
(full HBM for mass-radius relationship)

Introductory/General: Some exoplanet applications:



Want to learn more?

August 22-26, 2016: Opening Workshop; weekly telecons start 

October 17-28, 2016: Workshop on Hierarchical Bayesian Modeling 
of Exoplanet Populations 

Spring 2017: Extended work on hierarchical modeling 

May 8-10, 2017: Transition/closing Workshop

2016-2017: SAMSI Program on Statistical, Mathematical 
and Computational Methods for Astronomy

Working Group IV: Population Modeling & Signal Separation for 
Exoplanets & Gravitational Waves

Purpose: To bring astronomers and statisticians 
together to work on mutually interesting problems.

Come talk to me if you’d like to participate!


