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Is Multibelt Dust Interesting?

a signpost
for planets?
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t= B~ Searching for Planets in Two-Temperature

fOr ‘ Debris Disks with VLT/SPHERE
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Abstract: Direct Imaging allows us to detect the youngest, widest separation planets that are inaccessible to the Radial Velocity (RV) and transit
methods. Direct Imaging also gives the option of detailed spectroscopic follow-up analysis. In this work, we are particularly interested in two-
temperature debris disks, which are thought to indicate that the debris disk is segregated into multiple separate rings. The gap between these
dusty rings is believed to have been carved by the gravitational influence of one or several massive planets. We are performing a survey of 37
nearby, young stars with two-temperature debris disks using VLT/SPHERE. Our data reduction process, and some of the constraints we are able

to place on the systems, are discussed below.

Introduction: We are carrying out a survey of 37 nearby, young stars. For each
target, the infrared excess emission is thought to indicate that the star hosts a
dusty debris disk, segregated into two distinct belts with an intermediate gap [1].
We believe that this gap is likely to be caused by the gravitational influence of giant
planets, as has been observed for targets such as HR8799 [2] and B-Pic b [3].

As well as being a likely indicator for the presence of planets, the multi-belt nature
of our targets will allow us to calculate dynamical masses for any companions we
detect. For systems where candidates are not detected, we attempt to place both
upper and lower limits on the possible mass of planets residing in the debris disk.

For this survey, our targets are imaged with VLT/SPHERE [4] in IRDIFS mode, which
allows simultaneous imaging through two subsystems, namely IRDIS (InfraRed Dual
Imaging Spectrometer) [5] and IFS (Integral Field Spectrometer) [6]. On this poster
we present our data reduction & analysis for one example target: a young, ~15 Myr
star at ~140 pc.

Fig_1: Example data from the SPHERE/IFS instrument. We use the YJ mode,
allowing data collection at 39 spectral channels between 0.95 and 1.33 um. The
raw data consists of a series of spectra, at each point in the image. We first
perform basic calibrations: dark and flat field corrections, and IFS spectra
position & wavelength calibrations. We then use a custom routine (see [7]) to
convert the data into 4-d (x,y,A,t) cubes. After further calibration, we perform a
Principle Component Analysis on the full sequence of images. For the above
images, one candidate is observed at a separation of 0.8”, in the SW quadrant,

ADI+SDI image, 1.588 um - 1.667 um

Fig_2: Example data from the SPHERE/IRDIS instrument. Images are taken
simultaneously with two filters at 1588.8 nm and 1667.1 nm and exposure times of
2-32 s, with the full sequence consisting of roughly 100 images. After standard pre-
processing steps, we apply both Angular and Spectral Differential Imaging routines,
whereby we remove speckle noise based on both its wavelength and rotational
properties. This reduction process causes each candidate to appear as a ‘dipole’ in
the final image. For this target, we observe three candidate companions at
separations of 0.8”, 2.8” and 5.3”. Two very faint candidates are observed, at 3.6”
and 5.0” both at lower than 5¢ significance. Note that the reduced image has
been cropped to the show only the region containing candidate companions.

Analysis: The above target is typical of our survey results: we have identified
several candidate companions and are in the process of collecting follow-up data
which will be used to confirm whether each target is a companion or a background
star.

We are also studying the relationship between dust gaps and the planets that are
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One Milliarcsecond Astrometry of
3 Pic b with the Gemini Planet Imager

Jason Wang, James Graham, Laurent Pueyo, Paul Kalas, Maxwell A.

Millar-Blanchaer, Jean-Baptiste Ruffio, and the GPIES Team
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3 Pic b will not Transit!
(But its Hill sphere will)

Jason Wang, James Graham, Laurent Pueyo, Paul Kalas, Maxwell A.
Millar-Blanchaer, Jean-Baptiste Ruffio, and the GPIES Team
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Detecting Planet using Direct Imaging
Cross-correlation

N\,,M#\/\,% N‘/\\Mw:m/\/vv\

Noise Template Observation Matched-Filter
Template ate
Original 5

51 Eri b (GPI)



Forward Model Matched Filter (FMMF)
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High-Contrast Imaging of Giants
with RV Trends (Ryu+16)

RV trends suggest the presence of
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If companions are Even if not detected,

detected, we can derive . Wwecan constrain the RV

various parameters from trend source.

imaging data.
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Revealing the sources of RV trends enables us to
estimate frequency of distant planets.
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( JI ql :\/ Uncovering System [ )I ql :\/

Architectures Near the 2:1 Resonance

John H. Boisvert and Jason H. Steffen

* RVsignal of a planet with an eccentric Inner-to-Outer Period ratios of 2:1 and 2.17:1
orbit, from Kepler data (Steffen & Hwang 2015)

Vry~m4 cos(w,t) + myecos(Z2w;t) A — T

* RVsignal of two planets with near
circular orbits, with inner-to-outer

period ratio 2:1, .
Vey~mq cos(wt) + m, cos(2w,t) -
» Kepler hasrevealed manyadjacent
planet pairs with this period ratio and
a significant numberat 2.17:1.
* 48 systems from Exoplanets Data 1 2 3 4 5 6 71 8
Explorer (exoplanets.org, Han et al. Period Ratio
2014)1 reportEd as sl ngle pla netsl Wlth Figure 5. The period ratio distribution for Kepler planets using
mass < MJ, e > 0045, S/N > 2 only adjacent planet pairs and correcting for geometric bias and
pipeline completeness. The most prominent feature is the spike
° Systemic 2 Console near the 3:2 MMR. Second to that is the excess of planet pairs

near a period ratio of 2.2.

(www.stefanom.org/console-2)
* Same number of model parameters  §/N =

\/NobsXGKz



See my poster for more!

Quick Results
e 2:1 -58.33% Doublevs. 41.67% Single
e 2.17:1 -62.5% Double vs. 37.5% Single

* We plantoinvestigate furtherusing
more sophisticated statistical
approach.

* If thoseresultsarerobust, then they
will have major ramifications on the
formation histories and abundance
measurements of those systems.

* Unique formation channel for eccentric
singles and near circular doubles

* Scattering vs. interacting with disk
(removes eccentricity and drives planet
pair into an orbital resonance)
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Reflected Light of Extremely Close-In Exoplanets
Authors: Jennifer Carter & Kevin H. Knuth
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Including the Angular Size of the Star

Inner Tangents: Fully illuminated area <
50%

Outer Tangents: Night area < 50%

Partially illuminated = Penumbral zone

Total illuminated area > 50%
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