

## ÖAW (IWF) PYTRANSPOT - A TOOL FOR COMBINED TRANSIT AND STELLAR SPOT LIGHT-CURVE MODELING

Ines Juvan<sup>1,2</sup>, M. Lendl<sup>1</sup>, P. E. Cubillos<sup>1</sup>, L. Fossati<sup>1</sup>, F. Bouchy<sup>5</sup>, C. Hellier<sup>3</sup>, H. Lammer<sup>1</sup>, A. Triaud<sup>4</sup>, E. Guenther<sup>6</sup>, A. Hanslmeier<sup>2</sup>

#### ldea

- Develop a python routine for *simultaneous* transit & star stellar spot modeling
- fast & easy-to-use
- combine with a multi-core MCMC algorithm (precise system parameters & reliable error calculations)

#### Why?

- upcoming satellite missions will provide a large set of data (CHEOPS, TESS, PLATO, ...)
- number of observed transiting planets orbiting an active star will increase
- important tool for first steps of exoplanet characterization

#### Space Research Institute, Graz, Austria

- University of Graz, Austria
- Keele University, England
- University of Cambridge, England
- University of Geneva, Switzerland
- TLS Tautenburg, Germany

#### **PyTranSpot**

- PyTranSpot follows the approach of the PRISM IDL Code by Tregloan-Reed et al. (2013, 2015), but includes certain modifications and improvements
- combined with MCcubed1
- can model transit light curves with & without stellar spot activity (also: multiple spots!)
- uses a *pixellation method* to model star & planetary transit on a 2-dim grid
- includes limb darkening, options for polynom-fit (time, external parameters)



# PYTRANSPOT - A TOOL FOR COMBINED TRANSIT AND STELLAR SPOT LIGHT-CURVE MODELING

for more information, have a look at my poster!

### The WASP-53 System - Preliminary Results



- VALIDATION of the code's performance & capabilities using WASP-53 transit LCs
- FUTURE OUTLOOK: simultaneous analysis of LCs, include Gaussian processes, add more LD-law options

## ELLIPSOIDAL VARIATION MODEL TESTING

ANTHONY GAI – UNIVERSITY AT ALBANY



- BEER (Faigler & Mazeh, 2011)
- Kane & Gelino (2012)
- Kane & Gelino
   Modified (Placek, 2013)
- EVIL-MC (Jackson, 2012)
- Control (No Variation)





## KEPLER-13



#### Searching for planets in southern stars via Transit Timing Variations





Emiliano Jofré, Romina Petrucci, & Mercedes Gómez

Astronomical Observatory of Córdoba (OAC), Argentina National Scientific and Technical Research Council (CONICET), Argentina

#### The Transit Timing Variations (TTVs) technique





#### Searching for planets in southern stars via Transit Timing Variations





#### **Emiliano Jofré**, Romina Petrucci, & Mercedes Gómez

Astronomical Observatory of Córdoba (OAC), Argentina National Scientific and Technical Research Council (CONICET), Argentina

#### Our project:





- Photometric follow-up since mid-2011: 3 Argentinian telescopes
- Sample: Southern stars with transiting planets (V<14; k>~13 mmag)
- So far:
  - •Over 50 transits of >10 exoplanets
  - •Results for WASP-4b, WASP-28b, WASP-46b (more in preparation!)
  - •No signs of additional planets...but we are still looking!



ror more details about this project, predict our our posters or contact us.

## Ground Based Follow Up Observations of Hot Jupiters Sean McCloat<sup>1</sup>

#### **UND** Observatory

- 16-inch (0.4m) Meade LX200 SCT
- GEM, f/10 system
- Finger Lakes PL16803 CCD
- 4096 x 4096 array, 9x9 microns
- = FOV = 30 x 30 arcminutes



#### Target Parameters:

- Radius:  $\geq 0.5 r_{jup}$
- Brightness: ≤ 13<sup>th</sup> mag
- Discovered since 2011
- Visible from May Nov 2016

#### Result:

- 73 transit events
- 18 unique targets



#### Some Data for TrES-3 b





#### With the observations:

- Add to available transit dataset
- Orbital parameter refinement
- TTV analysis on targets with g multiple observations (KELT- 1 1b)

#### Currently working with:

- Dr. Paul Hardersen
  - Advisor at UND,
     Asteroid Spectroscopy
- Dr. Carolina von Essen
  - Pl of KOINet

#### <u>Current Project Status</u>:

- astronomer, telescope operator, grounds keeper
- Overcoming pointing problems
- Learning IRAF, Python





#### A SEARCH FOR ORBITAL DECAY IN SOUTHERN TRANSITING PLANETS



Romina Petrucci, Emiliano Jofré & Mercedes Gómez



Challenge for theories of formation and evolution of planetary systems

#### A SEARCH FOR ORBITAL DECAY IN SOUTHERN TRANSITING PLANETS





Romina Petrucci, Emiliano Jofré & Mercedes Gómez



#### **OUR PROJECT**

To perform a photometric follow-up of stars with Hot-Jupiters and short orbital periods to assess the presence of orbital decay



S

0

P

E

5



1.54-m telescope (EABA, Argentina)

2.15-m "Jorge Sahade" telescope (CASLEO, Argentina)



2016 Sagan Exoplanet Summer Workshop - July, 18-22

What should we do next with the Transiting Exoplanet Survey Satellite?



Primary mission (2017-19)

Ecliptic pole?

Repeat?
Ecliptic?

Extended mission (≥ 2020)

Luke Bouma • Igbouma@mit.edu

# Ecliptic pole maximizes the number of newly detected...

...planets with long orbital periods

...habitable zone planets

...multiple-planet systems.

Ecliptic plane detects...

... fewer new planets

orbiting brighter host stars,

which makes them more amenable to atmospheric characterization.

Visit poster 6 for discussion & details!

Luke Bouma • Igbouma@mit.edu





## An Optical Test Bench for Precision Characterization of the TESS CCD Detectors

Akshata Krishnamurthy

MIT Kavli Institute for Astrophysics and Space Research









#### Motivation





- Four wide-field optical charge-coupled device (CCD) cameras, band-pass of 650 nm 1050 nm
- Four back-illuminated MIT Lincoln Lab CCID-80 devices with 2kx2k imaging array
- 62 x 62 mm square area with 15  $\mu$ m square pixels
- The measurement of absolute quantum efficiency of the CCD detectors will hugely aid in data analysis, especially over redder wavelengths
- A higher QE will yield a higher photon count and a higher signal, and yield higher planetary detection

#### Precision Absolute QE Test Setup

The design goal is to develop a test bench capable of automated absolute quantum efficiency measurements over the spectral range of 650-1050 nm with an absolute error of 1.5 - 2.0 %.

