 ABeginners/Guide -



but first, Sagan workshops, symposiums and fellowships are the bomb




how to get the most out of a Sagan workshop, 2009-style

~lunch with Saganites
S
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drink coffee with Saganites

listen to the Saganites

POP the Saganites

..-nunm-l @ For S mn wtogration, 10 sec X 30

B fr ek tedd 4 fedds & year 10 Cover T whcke &0 000
o daad
Poew yows k] e obulidy el may g

' (perhaps bring more than one
% t-shirt for the whole week)

do the Saganite hands-on thingies




what I’ve learned about statistics

learning: textbooks/lectures are useful but personally |
prefer to just play and do, if you’re similar then rest assured
this is still a good way to learn! you are “smart” enough

community: astrostatistics is a small but rapidly growing
field, many workshops now that | didn’t have access to!

=7 credibility: be warned that many respectable
10— astronomers literally say Bayesian statistics is black magic

why?: i think of statistics as a means to an end, rather
than the end itself, a way to answer astro questions

you: (i bet) you are all more knowledgeable about
statistics than | was, I've just learned on the job and
learned from many of the amazing lecturers here via
papers and talks - so make sure you meet them all!
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What is the product of
MCMC?

INPUT PROCESS OUTPUT
4 )
DATA EST FIT,
FETVER ';p ¢ ' MCMC ' ;
‘wﬁ"j 1
'0°"°" ) \_ J

by-product of the MCMC is a
reasonable estimate of the best fit,
but that’s really not it’s raison d’étre
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what is: joint a-posteriori probability distribution (“posterior’)

the (joint) probability distribution of some parameters of interest, 0,
conditioned upon some data, & and a model/hypothesis, .#

pasically what’s the credible range of your
model parameters allowed by your data

you can also think of...
posterior = what you think the parameters are post using data
prior = what you think the parameter prior to using data

orior belief dala > posterior belief




example, 8 contains 16 parameters

this way of visualizing the posteriors is
called a triangle plot, check out
github.com/dfm/corner.py

those dashed lines are the
68.3% quantiles, which we often
declare as 81=2.0+0.1

Kipping et al. (2016)




prior belief dala » posterior belief

ikelihood, &

prior, T
posterior, & \ /

\p(@w,ﬂ) _ P(Dl(;’(ﬁ')/z()®|ﬂ)

evidence, Z, (marginal likelihood)

[if you want this for model selection,
do nested sampling, not MCMC]

normalization factor, doesn't depend on O
P(D|) = | P(D|O,.«)P(0|.2) dNO



prior belief dala » posterior belief

ikelihood, & orior, T

posterior, & \ /
\P(®|D,J%) o

P(D|O,.2)P(0O|.«)

in MCMC, we are just trying to get the posterior, the
normalization factor makes no difference to that so ignore it



prior, T

4

P(0]

a common sin by MCMC'ers is to pay little attention
to the prior... I'll come back to this next lecture
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the sampler “guesses” different 6
vectors, calculates the posterior
probability of that guess, and
then makes small jumps

INPUT
-

DATA
§=u1;ué\ ,ugq}
: i

%gﬁ’
\ Or phose

—

PROCESS

(o

o
oL I

4 )

ED

MCMGC

actually the point of the
sampler is to make

intelligent guesses with high

posterior probabillities
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SO we need...

some data
a model
a sampler
an equation for the likelihood
an equation for the prior
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some data
a model
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SO we need...

some data
a model
a sampler
an equation for the likelihood
an equation for the prior



ikelihood, &

olbservations are perturbed by stochastic noise

Yobs = VYtrue + €

we never really know the true noise, but often we can make a
good approximation, e.g. normally distributed (“white”)

ST residuals of
||ke||h<d, <z data - model just the pdf of a normal
- exp(—Vz}i?/o@) /
P(D|O®, %) = ﬂ ” measurement
=1 (21)01 <« uncertainty

it's often more convenient to calculate log&

4 )

. If oi=constant

0gZ = V5 Z ~log(2m) - log(ci) —(riZ/Oiz) =X~ K|093 =C - 1/2X2)

=1




you don’t have assume uncorrelated errors, for example
could use a Gaussian process likelihood...

P(Dl@,%) — —%I‘TC lr—%]()g(l(‘tC—%]()g'z;;

- —

check out https://speakerdeck.com/dfm/an-
astronomers-introduction-to-gaussian-processes



https://speakerdeck.com/dfm/an-astronomers-introduction-to-gaussian-processes

SO we need...

some data
a model
a sampler
an equation for the likelihood
an equation for the prior



SO we need...

some data
a model
a sampler
an equation for the likelihood
an equation for the prior

next lecture



SO we need...

some data
a model
a sampler
an equation for the likelihood
an equation for the prior

simple example:
Metropolis (1953)
algorithm

next lecture



1. define a function for £ & T and thus &

2. define an initial guess for O from 1

true answer

— is here
o) / (not the highest posterior
high & probability though)
(= high £)
(= low %?)
0, = iniiritiel LaRgeR)
guess
low &P
o)
(= low £)
(= high %?)




1. define a function for £ & T and thus &

2. define an initial guess for O from 1

0o, &

high & region



3.try ajumpin ©

high & region

METROPOLIS RULE

e |f g“trial > gbi,
trial, Pial accept the jump, so
,WO ei+‘| = etrial

eO, gij'x

[

try a jJump!




3.tryajumpin 6

01, &,

GO,V

high & region

METROPOLIS RULE

it Prrial > P,
accept the jump, so

0i+1 = O



3.tryajumpin 6

high & region

METROPOLIS RULE

It Prria > P,
accept the jump, so

0i+1 = O

If Prial < G,

accept the jump with
probability Pria/ P

this Is why evidence
doesn’t matter in MCMC!



3.tryajumpin 6

4., accept/reject based on Metropolis Rule

01, &,

GQ,V

high & region

METROPOLIS RULE

If Prria > P,
accept the jump, so

0i+1 = O

If Prrial < P,
accept the jump with

k|orobabili’[y Prriall Pi

~




5. keep jumping!

the successful jJumps
form a chain, called a
Markov chain

the algorithm is endless,
it will Kind of orbit the
true solution forever but

never stop at it

01, &,

0o, &

high & region

METROPOLIS RULE

It Prrial > P,
accept the jump, so

0i+1 = O

If Prrial < P,
accept the jump with

k|Orobabili’[y Prria P

~




5. keep jumping!
©. after you’ve done many steps, remove burn-in steps

post burn-in, fair
draws/samples/realizations

4 p
METROPOLIS RULE

It Prrial > P,
accept the jump, so

0i+1 = O

If Prial < 9P,

accept the jump with
k|orobabili’[y Prria P

burn-in steps




someone ignoring priors

general case someone ignoring priors and assuming normal errors

4 ) 4 ) 4 )

METROPOLIS RULE METROPOLIS RULE METROPOLIS RULE

If Prial > P, If Ptrial > &, If X2trial < Xzi,

accept the jump, so accept the jump, so accept the jump, so

0i+1 = Btia 0i+1 = Btial 0i+1 = Otrial

if Prrial < P, if Liria < &, if %2tial > %3,

accept the jump with accept the jump with accept the jump with
\probability Prriall Pi ) \probability Zrrial & ) \probability exp(—AXQ/Z))




burn-in point can be spotted by eye...

burn-in steps

post burn-in i.e. posterior samples

you want a large number of these (10% - 10°)

step number, |



MCMC algorithm

1. define a function for £ & 1T and thus &#

2. define an initial guess for O from 1

, 3. tryajumpin ©
4., accept/reject based on Metropolis Rule

5. keep jumping!
©. after you've done many steps, remove burn-in steps



How to make jumps (proposals)?

simplest thing Is to use a normal distribution

let etrial =0 + JV(O,AO)

sO draw a random number from a normal
distribution with stdev = “jump scale”

ok...so how do | choose jump scale, AB?!

That’s tricky, too small and it will take forever, too big
and you will overshoot. Experiment, and ideally tune to
a number which leads to a 10-70% acceptance rate

(you have to do this for each dimension!)



some checks to do...

caveat: for each of these, there are no single right answers that always
work, always inspect your chains, but here are some useful tips...

Burn-in: when the chain’s likelihood exceeds the median likelihood of
the entire chain, demarks burn-in point

Mixing: effective length of the chain should be at least a few
hundred, ideally thousands (each eff length defines a part of the
chain which is highly auto-correlated, common cutoff is 0.5)

Convergence: Run multiple chains independently and make sure they
arrive at the same end point, Gelman-Rubins statistic is a useful check



even If you do all that...

...Metropolis can still be a real pain for certain problems

x
®
=
O
normal proposals
O work fine here
£
=
O

dmin d dmax



even If you do all that...

...Metropolis can still be a real pain for certain problems

x
®
=
O
O
normal proposals
very inefficient here
£
=
O

dmin d dmax



even If you do all that...

...Metropolis can still be a real pain for certain problems

x
®
s
O
normal proposals

get stuck (unless you

© run for v. v. long time)
=
S
O

dmin d dmax



my advise...

write your own Metropolis MCMC, it’s a great way to learn

but except for simple problems, it’s difficult to know
what a good proposal function is, so you will probably
want to use a smarter sampler than Metropolis

fortunately there are many more sophisticated
technigues available to you...



some examples...

(non-exhaustive! there are hundreds of methods!)



metropo

IS-nastings

generalization of metropolis to asymmetric proposals

4 )

METROPOLIS RULE

accept the jump with
probability min(a,1):
q = g"(etrial)

P(0)

.
METROPOLIS
HASTINGS RULE

accept the jump with
probability min(a,1):

q — g"(etrial)/ J (etrial|ei)

P(0)/J(0i|Otrial)

J

Hastings (1970)



simulated annealing

good for multi-modal problems

If Prria < P, If Prrial < i, | |
accept the jump with » accept the jump with “S“‘?"”y the/ump s'/zes
probability (Pria/ P) probability (Piia/ )T are increased similarly

\ simple Metropolis think of it as
gets stuck in local smoothing out the
minima likelihood space at
high temperatures
v Y o gradually turn the
V N likelihood maxima, temperature down until you
but one global hit T=1, you can only use
Maximum samples from that level

(“cooling schedule”)



temperature levels

parallel tempering

good for multi-modal problems with parallel computing

similar to simulated annealing,
>< >< except temperatures are not

Z >< run in series but in parallel

>< >< at a pre-set step frequency,
>< allow chains to swap

only the lowest chain is

' !.'1' L1111 used for posterior samples
I 1+

MCMC chain update



affine-invariant sampling

good for multi-modal & correlated problems with parallel computing

set of walkers O

Goodman & Weare (2010)



affine-invariant sampling

good for multi-modal & correlated problems with parallel computing

set of walkers O

starting
point ® O o

Goodman & Weare (2010)



affine-invariant sampling

good for multi-modal & correlated problems with parallel computing

set of walkers ©
O
o O
@
O
® O
starting proposed
point ) o displacement
direction
O
@ @
O

Goodman & Weare (2010)



affine-invariant sampling

good for multi-modal & correlated problems with parallel computing

an ensemble MCMC: no longer ©
just updating one set of model ©
parameters each time, but a O ©
generation/ensemble ®
O
© ®
starting Sroposal proposed
point ) o displacement
direction
O
@ @
© emcee (python): Foreman-Mackey et al. (2013)
O

Goodman & Weare (2010)



differential evolution

good for multi-modal & correlated problems with parallel computing

O
O
o O
O
@)
© O
test proposed
point o displacement
O . .
direction
starting @
o Point g
O

O

O

ter Braak (20006)



differential evolution

good for multi-modal & correlated problems with parallel computing

both affine invariant and ©
differential evolution have O
fewer tuning parameters o ©
than Metropolis, primarily
need to just set the scale ° 5
© O
test proposed
point o o displacement
direction
starting proposal
@ oint
° O exofast (idl): Eastman et al. (2012)
O

emcee (python): Foreman-Mackey et al. (2013)

ter Braak (20006)



getting starteo

p first make sure you are comfortable with the concepts of
priors, likelihood and posteriors

» then try coding up your own MCMC with Metropolis sampling
In your favourite language, run on some toy problems

» before choosing a prepackaged MCMC, think about your problem
e.g. dimensionality, correlations, likelihood cost, multimodality

» then do some research about “good” algorithms for your problem:
literature search, google, Astrostatistics FB group, ask colleagues!

» (if a few options, choose the one you feel like you best understand!)



