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come talk to me
to learn more
about our group!

(some) things we are interested In...

population modeling, neural networks, exomoons, exorings,
long-period planets, single-transits, compact objects in

photometry, SETI, rocky planet compositions, LSST, TESS, GAIA


http://www.cool
http://www.cool

prior belief dala » posterior belief

ikelihood, & orior, T
posterior, & \ /

\P(®|D,ﬂ) « P(D|O,.#)P(0|.«)



www.youtube.com/c/Cool\WorldsLab


http://www.youtube.com/c/CoolWorldsLab

Think of some cases where...

a detection claim was made about something for which the
world/scientific community has a very strong prior against

did it turn out right or wrong??

‘extraordinary claims require
extraordinary evidence”
(to overwhelm our prior belief)

Carl Sagan




P(O|D,) o« P(D|O,.#)P(O|.)

the end result, the posterior, is a balancing act
between the likelihood and the prior

» Think about the outcome being affected by both the likelihood and the prior
» Posteriors from low signal-to-noise data (low likelihood) are strongly affected by the priors
» Posteriors from high signal-to-noise data (high likelihood) are weakly affected by the priors



this is not a weakness! it’s a strength!
» If your result changes when you change between reasonable priors, then this is telling you that
your data are crappy, which is useful information!!
» Your previous posterior can become the prior for the next experiment: “Bayesian learning”




the sampler “guesses” different 6
vectors, calculates the posterior
probability of that guess, and
then makes small jumps
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used in practical exoplanet work

log likelihood
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iInverse transform
sampling
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uninformative priors: uniform

bit of misnomer, really a prior which is not subjectively elicited

simplest rule is via the principle of indifference, which assigns
equal probabillity to all possibilities = a uniform prior

1/(b-a)

paf(x)

pdf(X) =

> X

(b-a)"
0

I a<x<

otherwi

SE



uninformative priors: uniform

often exoplaneteers technically use an improper prior for this,
since a and b are not formally defined in their paper or even code

here, the user Is treating a=-c0 and/or b=+co, but that leads to
odf(x) = 0 everywhere => you should be rejecting all MCMC trials!

in practice, this is generally OK though, since

T = a constant for a uniform prior
m+1 - T = 0 for a uniform prior

thus the jJump acceptance probability is insensitive to a or b, and
thus a and b can be just very large numbers



general case

METROPOLIS RULE

If Pirial > P,
accept the jump, so
0.1 = Bia
It Prria < P,

accept the jump with
\prObabiIity Prriall Pi

~

someone Ignoring priors

-
METROPOLIS RULE

If Lirial > &,
accept the jump, so

011 = Ouia

If Lrial < &,
accept the jump with

k|orobaloility Prial L

~N

someone ignoring priors

and assuming normal errors

p
METROPOLIS RULE
If thrial < Xzi,

accept the jump, so

0i+1 = Bira

if %2tial > %4,
accept the jump with

~N

\probability exp(—Ax2/2)j

you are using
unbounded uniform
priors implicitly




uninformative priors: uniform

often, a or b or both can be set to some physical lower/upper bound

eccentricity, e>0 by definition and e<1 if the orbit is periodic
ratio-of-radil, p>0 by definition and p<1 If the object is smaller than the star

a/R*, ar>(1+p) or else the planet is in contact with the star



uninformative priors: uniform

however, sometimes we

e.g. , -1<p<+1 and treat negative radii as being inverted transits

for parameters (e.g. p, e, K) near zero,

If we set a boundary
posterior condition at 0, MCMC
density posteriors get positively-
skewed due to rejection
bias of walkers




uninformative priors: uniform

this is , where even high SNR data
with a truth of e=0 return posteriors positively biased if one fits for e directly

see Lucy & Sweeney (1971), Zakamska, Pan & Ford (2011), Lucy (2012)

for eccentricity, a good trick is to fit for -1<e”sino<+1 and -1<e”cosn<+1

posterior
density




uninformative priors: uniform

If you have to calculate the parameter of interest from your fitted terms,
check out what the prior on the parameters of interest is via Monte Carlo

: 1 1
esinm & ecosw e”sinm & e”°cosw
n = 10°%; n = 10°%;
h = RandomVariate [UniformDistribution([{-1, 1}], n]; h = RandomVariate [UniformDistribution[{-1, 1}], n];
k = RandomVariate[UniformDistribution([{-1, 1}], n]; k = RandomVariate [UniformDistribution[{-1, 1}], n];
e= Table[‘\/h[[i] 1“2+ k[[1]]*2, (i, 1, n}]; e =Table[h[[i]]"2+k[[i]]"2, {i, 1, n}];

Histogram[Select[e, # <1 &]]
Histogram|[Select[e, # <1 &]]
00 ___ _—
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on a related note, but beyond the scope of this priors lecture, the proposal function
can be selected to minimize inter-parameter correlations. See Carter et al. (2008) for
transits and Ford (2006) for RVs. Although, emcee would do this for free anyway



uninformative priors: log-uniform

for parameters which are scale-like and span orders-of-magnitude, a log-
uniform distribution is usually considered “more uninformative”

e.g. K, P, ar, p-

Not tmia (Can span a large range but is certainly a location-like parameter)

f(x) = - 1 f(x)
X 109(Xmax/Xmin)

so not useful if you
have a parameter

0 X which extend to O
modified log-uniform can
extend to O, useful for K but
not usually needed for P
f(X) see Ford &
f(x) = 1 1 Gregory (2007)
X+Xo 10g((Xo+Xmax)/Xo)
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iInformative priors: Bayesian learning

consider running MCMC on in principle, this is the

some initial data, D+ same as re-fitting bo
data sets together wi

Sj(l)

the original prior

initial prior is
uniform

_/ \_

initial prior is
uniform

— < now run MCMC on

some new data, Do
use posterior from here

as a prior here

prior
exoplaneteers almost always

just re-fit everything rather than
trying to do Bayesian learning 7 N




why"? good luck using this as a prior...

Bayesian learning could be useful for
scheduling of telescope time/resources
though, happy to bounce ideas with youl!

Kipping et al. (2016)




iInformative priors: observed distributions

someone shows you some RV data of a new planet...

A

max likelihoods
RV are identicall

(M/s)

e=0 e=0.5

time

So which solution do you think is
more likely to be the truth?



iInformative priors: observed distributions

but you’ve seen hundreds of RV curves before, you know from
experience that eccentric solutions are rarer than circular orbits

In fact the distribution of eccentricities of RV planets looks like this

5 | | | | | | | | ]
Kipping (2013)
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we can encode the sage wisdom of the
seasoned observer using an informative prior



iInformative priors: observed distributions

Probability Density

—

Kipping (2013)

Beta distribution example

P(e) ~ Beta(0.867,3.03)

intrinsic distribution filtered though

oo

Eccentricity

transits have

the detection biases of RVs

though,



iInformative priors: observational bias

let’s assume Intrinsic IS a Beta...

N
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geometric transit probability is...

- 1 1+ esinw
P(b‘e’w):(a3)< 1 —e2 )

Celestial
sphere

(Barnes 2007, Burke 2008)

Shadow band

(Winn 2011)

SO eccentricity distribution conditioned on planet transiting is...

__ P(I;\ff,w)P(e,w)
Jezo JoZo P(ble;w)P(e, w) de dw (Kipping 2014)

A — e sin w —e) e !
P(e,wlb) = (27T’715F[041‘|‘ 5]> (1 _il_— e2 ) <(1 B[)oz, Bl )

P (e, w|b) =

(Kipping 2013)



sSO... what did that do?



iInformative priors: observational bias
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iInformative priors: observational bias

\ — = P(elb)

Probability Density

oo 0.25 0.50 0.75 1.00

3x1 0—3,

Probability density
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0 60 120 180 240 300 360
w [°]



iInformative priors: observational bias
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iInformative priors: observational bias

this gets even more tricky if we consider conditioning on both geometric bias
and detection bias (e.g. apoapsis transits are longer => more detectable)

A Pr(e) (Kipping &
Pr(e|d,b) o< V1 —¢E V1+eE
eldb) = T2 ( [ |+ Ve [ 1D Sandford 2016)
detection bias geometric bias also: we don’t know what
observational bias of RVs are!!
detection bias suppresses observational (Stay tuned via Chen & Kipping)
bias towards periapsis transits
Plelb)
NG N e

Prob. density

I I I I L J—_) I
0 2 z 3z n 5x 32—” Zz 2n

Argument of periastron, w [rads]



informative priors: observational bias

distribution of X from
detection method Y
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distribution of X from
detection method Y

this is ok )

don’t do this a
without thought

treat as a prior for P(X)
for analyzing data from

detection method Y

treat as a prior for P(X)
for analyzing data from

detection method Z
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implementing priors: log-like penalization

P(®|D,.) « P(D|O®,.2)P(0|.)
P T
|Qggb o |Og(ff 7-[) log probabilities more

numerically stable

0g&P x [0gZ + logm

so just add on log(prior probability)

can think of as being loglike penalization



implementing priors: log-like penalization
example: a normal distribution prior, N(u,0)

exp(-72(x-p)?/0?)
Tix) = (2m)”°0

logm = -Yalog(2m) - Valog(o?) - Va(x-p)2/0?

unless you want the evidence, can ignore constants

logT = - Va(x-p)2/0?

(highest prior probability occurs when x=u, as expected)
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implementing priors: inverse sampling

S
&
O
likelihood, £
O
prior, TT
c
&
O
dmin a

accepted jumps have to be a
) high £ ii) high TT

everytime we compute logm and
make essentially blind jumps

but a more elegant solution is
sometimes possible, by drawing
a sample directly from the prior

drawing a random.normal()
won't work though, as we need

to "walk” in the parameter in
order to build a Markov chain

this is possible with inverse
transform sampling

dmax



implementing priors: inverse sampling

F(x) = [% f(X)) dX

>
0 X 0

for a proper prior, O<F(x)<1



implementing priors: inverse sampling

but is just random samples, does not
constitute walking



implementing priors: inverse sampling

but it’s fairly straight forward to just walk in the

F(X) F(X) space, and convert into a x sample
1
|
|
,—
|
|
|
% I
— 0
> X
X\\ //%
N /
N 74
\L | A

S

IN the limit of no likelihood, Markov chain will be a
uniform chain in F(X) => normal dist in X, as required



implementing priors: inverse sampling

inverse transform sampling is
optimally efficient for exploring
the prior volume

bmax

likelihood, £

easy to implement for standard
1D distributions

because of this, some
Bayesian inference packages
sample from the priors
exclusively in this way e.g.
MultiNest (Feroz 2008,2009)

prior, TT

but, 2D and non-standard
distributions (that one might
derive when doing observational
priors) can be intractable

bmin

dmin d dmax
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transits

(Foreman-Mackey+ 2013)
P ~ log-uniform

tmia ~ uniform
p=Rp/R+ ~ uniform or log-uniform

b or cos(i) ~ uniform

a/R-~ or p~ ~ log-uniform

(Kipping 2014; Kipping & Sandford 2016)

e ~ Beta corrected & w ~ uniform
(Ford 2006)

or e”2sinw & e”2cosw ~ uniform

(Kipping 2013b/2016)
g+1/02 Of ay/a/ae ~ uniform

RVS

(Ford & Gregory 2007, Balan & Lahav 2008)
K ~ modified log-uniform

If following up a known transiter

or K~ uniform to -ve

(Ford & Gregory 2007, Balan & Lahav 2008)
s ~ modified log-uniform

tcoan Uniform

not the “right” answer, just my
personal recommendations,
although | would always think about
the specifics of my problem!



extra slides on
Imb darkening



() =1 - ui(1-0) - we(1-2  |gq = (Ur+U2)?

1] everywhere positive: [()>0 o = Your (U1+U2)_1
2] monotonically decreasing form surface to limb: dl/du>0 Kipping (2013b)
(m > Oj (UH-QUZ > O)
o
o
0.8| ' |
S
0.6
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02|
Syl L
0.0 | PO A R N AN P LN IR G 5ol g_\___-_
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Vi=u/2
vi=ai2 e thanks computer
" Vo = 1-01172 games!



W) =1 - ur(1-Y) - u2(1-p)?2 quadratic law

(L) = 1 -|ca(T ‘UWD- co(1-1) - ¢ ‘U8/2> - Col1-12) non-linear law

Sing (2010) argue that dropping the ¢ term is motivated by
Solar data (Neckel & Labs 1994) and 3D stellar models (Bigot

et al. 2006), which show that I(J) varies smoothly at small |,
meaning that a U2 term is superfluous

) =1 - co(1-1) - c1(1-1%?) - co(1-12) 3-parameter law

| can’t Imagine 4-dimensions, so No.
| can imagine 3 though!



re-scale axes 1o push loci inside the unitary cube
then rotate the loci round aligning envelope with the
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next again re-scale to inside the unitary cube
then re-align cone’s apex to y-axis
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finally use standard method for sampling from a

cone 1o re-parameterize INto alpha
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https://github.com/davidkipping/l DC3

| - 94.4% completeness |
using the alpha parameterization, we draw the green samples, which

encompass 94.4% of the total allowed region

97.3% validity
due to slight modification of assuming a perfect cone, 97.3% of the samples

drawn using the alpha-parameterization satisty the initial conditions

ensuring 100% validity
the remaining 2.7% unphysical samples can be easily removed with a rejection

algorithm check afterwards (this check is fully analytic!)


https://github.com/davidkipping/LDC3

