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P(𝒟|𝚯,𝓜)P(𝚯|𝓜)P(𝚯|𝒟,𝓜) ∝

likelihood, 𝓛 prior, π
posterior, 𝓟

prior belief data posterior belief



www.youtube.com/c/CoolWorldsLab 

http://www.youtube.com/c/CoolWorldsLab


Think of some cases where...

a detection claim was made about something for which the 
world/scientific community has a very strong prior against

did it turn out right or wrong?

“extraordinary claims require 
extraordinary evidence”  

(to overwhelm our prior belief)

Carl Sagan



the end result, the posterior, is a balancing act 
between the likelihood and the prior

likelihood prior

‣ Think about the outcome being affected by both the likelihood and the prior 
‣ Posteriors from low signal-to-noise data (low likelihood) are strongly affected by the priors 
‣ Posteriors from high signal-to-noise data (high likelihood) are weakly affected by the priors

P(𝒟|𝚯,𝓜)P(𝚯|𝓜)P(𝚯|𝒟,𝓜) ∝



some people despise Bayesian statistics because one 
needs to define a prior

this is not a weakness! it’s a strength! 
‣ If your result changes when you change between reasonable priors, then this is telling you that 
your data are crappy, which is useful information!! 
‣ Your previous posterior can become the prior for the next experiment: “Bayesian learning”

likelihood prior



DATA model

sampler

θ ℒ

“POSTERIOR”

INPUT

PROCESS
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θ π

priors

data

𝒟

MCMC

the sampler “guesses” different θ 
vectors, calculates the posterior 

probability of that guess, and 
then makes small jumps

actually the point of the 
sampler is to make 

intelligent guesses with high 
posterior probabilities



how to... 
choose a prior

how to... 
implement a prior

uninformative

informative

conjugate

log likelihood 
penalization

inverse transform 
sampling

useful for analytic work, but not really 
used in practical exoplanet work
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uninformative priors: uniform

bit of misnomer, really a prior which is not subjectively elicited

simplest rule is via the principle of indifference, which assigns 
equal probability to all possibilities = a uniform prior

a b

pdf(x)

1/(b-a)

x

pdf(x) = (b-a)-1   if a<x<b
0          otherwise



often exoplaneteers technically use an improper prior for this, 
since a and b are not formally defined in their paper or even code

here, the user is treating a=-∞ and/or b=+∞, but that leads to 
pdf(x) = 0 everywhere => you should be rejecting all MCMC trials!

in practice, this is generally OK though, since 

πi+1 - πi = 0 for a uniform prior
π = a constant for a uniform prior

thus the jump acceptance probability is insensitive to a or b, and 
thus a and b can be just very large numbers

uninformative priors: uniform



METROPOLIS RULE

if 𝓛trial > 𝓛i, 
accept the jump, so 
θi+1 = θtrial

if 𝓛trial < 𝓛i, 
accept the jump with 
probability 𝓛trial/𝓛i

METROPOLIS RULE

if 𝛘2trial < 𝛘2i, 
accept the jump, so 
θi+1 = θtrial

if 𝛘2trial > 𝛘2i, 
accept the jump with 
probability exp(-Δ𝛘2/2)

METROPOLIS RULE

if 𝓟trial > 𝓟i, 
accept the jump, so 
θi+1 = θtrial

if 𝓟trial < 𝓟i, 
accept the jump with 
probability 𝓟trial/𝓟i

general case someone ignoring priors someone ignoring priors 
and assuming normal errors

you are using 
unbounded uniform 

priors implicitly



uninformative priors: uniform

often, a or b or both can be set to some physical lower/upper bound

eccentricity, e>0 by definition and e<1 if the orbit is periodic

ratio-of-radii, p>0 by definition and p<1 if the object is smaller than the star

a/R*, aR>(1+p) or else the planet is in contact with the star



uninformative priors: uniform

however, sometimes we deliberately explore unphysical solutions...

e.g. ratio-of-radii, -1<p<+1 and treat negative radii as being inverted transits

for amplitude-like parameters (e.g. p, e, K) near zero, helps avoid 
posterior bias due to boundary conditions...

p

posterior 
density

if we set a boundary 
condition at 0, MCMC 

posteriors get positively-
skewed due to rejection 

bias of walkers



uninformative priors: uniform

e

posterior 
density

this is particularly well-known for eccentricity, where even high SNR data 
with a truth of e=0 return posteriors positively biased if one fits for e directly
see Lucy & Sweeney (1971), Zakamska, Pan & Ford (2011), Lucy (2012)

for eccentricity, a good trick is to fit for -1<e½sin⍵<+1 and -1<e½cos⍵<+1



uninformative priors: uniform

e½sin⍵ & e½cos⍵esin⍵ & ecos⍵

if you have to calculate the parameter of interest from your fitted terms, 
check out what the prior on the parameters of interest is via Monte Carlo

on a related note, but beyond the scope of this priors lecture, the proposal function 
can be selected to minimize inter-parameter correlations. See Carter et al. (2008) for 
transits and Ford (2006) for RVs. Although, emcee would do this for free anyway



uninformative priors: log-uniform
for parameters which are scale-like and span orders-of-magnitude, a log-
uniform distribution is usually considered “more uninformative”

e.g. K, P, aR, ⍴*

not tmid (can span a large range but is certainly a location-like parameter)

f(x) = 1
x

1
log(xmax/xmin)

f(x)

x

f(x)→∞ as x→0
but be warned that

so not useful if you 
have a parameter 
which extend to 00

f(x)

x0

f(x) = 1
x+x0

1
log((x0+xmax)/x0)

modified log-uniform can 
extend to 0, useful for K but 

not usually needed for P
see Ford & 

Gregory (2007)
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informative
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sampling

uniform, think about 
boundary conditions
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scaling orders-of-magnitude

check priors on key 
parameters via Monte Carlo

useful for analytic work, but not really 
used in practical exoplanet work
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informative priors: Bayesian learning

initial prior is 
uniform

posterior from 
data, D1

consider running MCMC on 
some initial data, D1

(old prior)

posterior from 
data, D2

now run MCMC on 
some new data,  D2

prior

use posterior from here 
as a prior here

initial prior is 
uniform

posterior from 
data, D1 & D2

in principle, this is the 
same as re-fitting both 
data sets together with 

the original prior

exoplaneteers almost always 
just re-fit everything rather than 
trying to do Bayesian learning



why? good luck using this as a prior...

Kipping et al. (2016)

Bayesian learning could be useful for 
scheduling of telescope time/resources 

though, happy to bounce ideas with you!



informative priors: observed distributions

e=0 e=0.5
time

RV 
(m/s)

so which solution do you think is 
more likely to be the truth?

someone shows you some RV data of a new planet...

max likelihoods 
are identical!



4 David M. Kipping

Table 1. Using the observed eccentricities of 396 exoplanets from www.exoplanets.org, we display the results of regressing several CDFs.
Along with the parameters (columns 3-5) we also show the Bayesian evidence (column 2) of each regression (higher is better).

Distribution Evidence Parameter 1 Parameter 2 Parameter 3

Uniform[emin,emax] −664.761 ± 0.053 0.90+1.48
−0.66 × 10−4 0.6071+0.0037

−0.0037 -

Beta[a,b] +374.705 ± 0.046 0.867+0.044
−0.044 3.03+0.17

−0.16 -

Rayleigh+Exp[α,σ,λ] +373.400 ± 0.049 0.781+0.083
−0.132 0.272+0.021

−0.036 5.12+1.44
−0.61

Uniform+Exp[α,σ,emax] +332.506 ± 0.054 0.1292+0.069
−0.070 0.2229+0.0051

−0.0048 0.559+0.037
−0.035

ST08[k,a] +371.475 ± 0.051 0.2431+0.0060
−0.0059 4.33+0.18

−0.18 -
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Figure 2. Left: CDF of e for 396 extrasolar planets (grey bars), taken from www.exoplanets.org (Wright et al. 2011). The red line
shows the smallest step size CDF. The black solid line shows the fitted Beta distribution and the green dashed line shows the fitted
Rayleigh+exponential distribution. Although there is negligible difference between the latter two, the Beta distribution requires one less
shape parameter and is preferred in a Bayesian sense. Right: PDF of the same data (grey bars). We also show 100 random draws (blue
lines) from the joint posterior of the Beta distribution parameters and the best fit in solid black. The range between the coloured lines
illustrates the model uncertainty.
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Figure 3. Probability density distribution of e for 396 extrasolar
planets (black bars), taken from www.exoplanets.org. The error
bars shown are computed using Poisson counting statistics. The
red-dashed histogram shows a PDF of a synthetic population gen-
erated using the maximum likelihood parameters of a Beta dis-
tribution regressed to the observed sample. Using just two shape
parameters, the fitted Beta distribution is fully consistent with
the observed distribution.

are computed using the same method described in §3.1. The
CDFs are then fitted with global shape parameters for hy-
pothesis H1 and local shape parameters for hypothesis H2.

The results of this exercise are shown in Table 2. We
note that the global fit retrieves slightly different parame-
ters than those found when using a single CDF function.
Parameter a is found to differ by 2.4 σ and b by 1.8 σ. We
attribute this difference to the binning procedure where the
number of unique eccentricities defines the maximum reso-
lution possible when constructing a CDF. As a result, the
combined CDF result will have the higher resolution and
thus greater reliability.

The Bayesian evidence yields an 11.6 σ preference for
hypothesis H2. We therefore conclude that there is a sig-
nificant difference between the eccentricity distributions of
short- and long-period exoplanets. Furthermore, the short-
period planets show a larger fraction of low-eccentricity
planets relative to the flatter distribution found for long-
period planets (see Fig. 4). This is consistent with the effects
of tidal circularization (Rasio & Ford 1996).

4 DISCUSSION & CONCLUSIONS

We have shown how the Beta distribution is a useful tool for
parametrizing the distribution of exoplanet orbital eccentric-

but you’ve seen hundreds of RV curves before, you know from 
experience that eccentric solutions are rarer than circular orbits

informative priors: observed distributions

in fact the distribution of eccentricities of RV planets looks like this

Kipping (2013)

we can encode the sage wisdom of the 
seasoned observer using an informative prior



informative priors: observed distributions
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planets (black bars), taken from www.exoplanets.org. The error
bars shown are computed using Poisson counting statistics. The
red-dashed histogram shows a PDF of a synthetic population gen-
erated using the maximum likelihood parameters of a Beta dis-
tribution regressed to the observed sample. Using just two shape
parameters, the fitted Beta distribution is fully consistent with
the observed distribution.

are computed using the same method described in §3.1. The
CDFs are then fitted with global shape parameters for hy-
pothesis H1 and local shape parameters for hypothesis H2.

The results of this exercise are shown in Table 2. We
note that the global fit retrieves slightly different parame-
ters than those found when using a single CDF function.
Parameter a is found to differ by 2.4 σ and b by 1.8 σ. We
attribute this difference to the binning procedure where the
number of unique eccentricities defines the maximum reso-
lution possible when constructing a CDF. As a result, the
combined CDF result will have the higher resolution and
thus greater reliability.

The Bayesian evidence yields an 11.6 σ preference for
hypothesis H2. We therefore conclude that there is a sig-
nificant difference between the eccentricity distributions of
short- and long-period exoplanets. Furthermore, the short-
period planets show a larger fraction of low-eccentricity
planets relative to the flatter distribution found for long-
period planets (see Fig. 4). This is consistent with the effects
of tidal circularization (Rasio & Ford 1996).

4 DISCUSSION & CONCLUSIONS

We have shown how the Beta distribution is a useful tool for
parametrizing the distribution of exoplanet orbital eccentric-

Kipping (2013)

P(e) ~ Beta(0.867,3.03)

Beta distribution example

you can’t just apply this to the sample of 
detected transiting planets though, 

transits have different detection biases

intrinsic distribution filtered though 
the detection biases of RVs



informative priors: observational bias

2 David M. Kipping

astron in transiting systems in §3. Implications and sug-
gested applications of this work are discussed in §4.

2 PRIOR TRANSIT PROBABILITY

2.1 Geometric Probability

We begin by considering the prior probability that
a planet transits its host star, which is often re-
ferred to as the “geometric” transit probability.
This probability is crucial in the design of surveys
(Baglin et al. 2006; Borucki et al. 2009; Ricker et al.
2010; Rauer et al. 2014), predicting detection yields
(Beatty & Gaudi 2008; Dzigan & Zucker 2012), as a
prior when statistically validating planets (Torres et al.
2004; Fressin et al. 2012; Morton 2012) and perhaps
most critically calculating planet occurrence rates from
transit surveys (Hartman et al. 2009; Youdin 2011;
Howard et al. 2012; Berta et al. 2013; Dong & Zhu
2013; Dressing & Charbonneau 2013; Fressin et al. 2013;
Petigura et al. 2013). Despite the importance of this
probability, it is surprising how often its effects are ig-
nored in many of the afore mentioned tasks.

The geometric transit probability is a well-known re-
sult (Barnes 2007; Burke 2008; Winn 2010), although it
is usually not framed in a Bayesian manner. In this work,
we define a transiting planet to be one which satisfies the
criterion that the sky-projected impact parameter, b, of
the transit is less than unity. In turn, the impact param-
eter is defined as the sky-projected separation between
the centre of the planet and the centre of the star in units
of the stellar radius at the instant of inferior conjunction.
This instant occurs when the true anomaly, f , is equal
to (π/2−ω), where ω is the argument of periapsis of the
planet’s orbit.

b =

(

1− e2

1 + e sinω

)(

a cos i
R⋆

)

, (1)

where i is the orbital inclination, a is the semi-major
axis, R⋆ is the stellar radius and e is the orbital eccentric-
ity. For an isotropic distribution of planetary orbits, we
expect cos i to be uniformly distributed between 0 and 1.
Therefore, the geometric transit probability is computed
by an integration over cos i between all cases where the
planet transits, normalized by all cases in total,

P(b < 1|e,ω, (a/R⋆)) =

∫ cos(i) when b=1

cos(i) when b=0
d cos(i)

∫ cos(i)when b=∞

cos(i)when b=0
d cos(i)

,

=

∫
cos(i)= 1+e sinω

(a/R⋆)(1−e2)

cos(i)=0 d cos(i)
∫ cos(i)=1
cos(i)=0

d cos(i)
,

P(b̂|e,ω, aR) =
( 1
aR

)(1 + e sinω
1− e2

)

, (2)

where, for convenience, we have substituted
(a/R⋆) → aR and (b < 1) → b̂.

2.2 Independent Priors P(ω) and P(e)

Using Bayes’ theorem, one may marginalize the geomet-
ric transit probability, P(b̂|e,ω, aR), over the conditional
variables, provided that suitable priors may be defined.
Marginalization is a powerful tool when an exact value
for a conditional variable cannot be assigned, but the
prior probability is known. It is worth noting that a fre-
quentist may argue that the act of selecting priors re-
moves objectivity. However, this criticism is not perti-
nent for a mature field like exoplanetary science, where
informative priors now exist thanks to two decades of
more than a thousand planet discoveries and/or reason-
able priors are easily defined thanks to the geometrical
nature of the problem.

As an example, one should expect that planets (i.e.
all planets, not just transiting planets) have no preferred
orientation in space and so the prior distribution of ω
may be assumed to be uniform. In this work, we therefore
adopt the following independent prior for ω:

P(ω) =
1
2π

. (3)

One could adopt a uniform prior for orbital eccen-
tricity too, representing an uninformative choice. How-
ever, unlike ω, there are physical reasons to expect a non-
uniform distribution in e, largely due to tidal circulariza-
tion (Trilling 2000). Further more, as shown later, a uni-
form prior in e is not amenable to marginalization. Both
of these problems are overcome by using a Beta distri-
bution prior, as advocated in Kipping (2013). The Beta
distribution is able to reproduce a wide variety of prob-
ability distributions despite being described compactly
by just two “shape” parameters, α and β. More over,
Kipping (2013) demonstrated that the Beta distribution
currently provides the best match to the observed distri-
bution of e versus any previously proposed form. In this
work then, we adopt the following independent prior for
e:

P(e) =
(1− e)β−1eα−1

B[α, β]
, (4)

where B[α, β] is the Beta function. Note that our
definition assumes P(e) is the same for all planets irre-
spective of any other terms such as host star properties or
orbital period. On the surface, this assumption is flawed
since it is known the shorter-period planets are more fre-
quently circular (Kipping 2013), for example. In practice,
this may be easily overcome by determining α and β for
a sub-population and then applying the equations de-
rived throughout this work as normal, except with the
understanding that all derived results only hold for the
sub-population in question. This assumption greatly sim-
plifies the resulting mathematics without significant loss
of applicability.

c⃝ 2014 RAS, MNRAS 000, 1–9
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plifies the resulting mathematics without significant loss
of applicability.
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let’s assume intrinsic is a Beta...

geometric transit probability is...

(Barnes 2007, Burke 2008)

(Kipping 2013)

so eccentricity distribution conditioned on planet transiting is...
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eccentricity distribution. Further more, we show that previously extracted ec-
centricity distributions using Kepler data are positively biased. In cases where
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tribution. Computer code of this algorithm, ECCSAMPLES, is provided to enable
the community to sample directly from the prior (available here).
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1 INTRODUCTION

P(e,ω |̂b) =
P(b̂|e,ω)P(e,ω)

∫ 1

e=0

∫ 2π

ω=0
P(b̂|e,ω)P(e,ω) de dω

(1)

Orbital eccentricity is one of the most fundamental
properties of a planetary orbit. Unlike the planets of the
Solar System, exoplanet eccentricities have been found
to exhibit broad and diverse range (Butler et al. 2006;
Kipping 2013). In a Bayesian sense, our a-priori expec-
tation of a planet’s eccentricity has dramatically shifted
in the past two decades. The apparent prevalence of ec-
centric systems underscores the need for adopting data
models which freely explore both orbital eccentricity and
argument of periapsis. Inaccurate treatment, or a com-
plete lack of consideration, of eccentricity leads to erro-
neous inferences of the properties of individual systems
and ensemble populations.

⋆ E-mail: dkipping@cfa.harvard.edu

The distribution of orbital eccentricities is, how-
ever, more than just a nuisance factor, it repre-
sents the scars of past dynamical activity in plan-
etary systems (Rasio & Ford 1996; Jurić & Tremaine
2008; Chatterjee et al. 2008). For this reason, extract-
ing the underlying eccentricity distribution of exoplan-
ets has become a topic of considerable recent effort (e.g.
Shen & Turner 2008; Wang & Ford 2011; Kane et al.
2012).

Extracting an accurate eccentricity distribution de-
mands that any observational biases be correctly ac-
counted for. For transiting planets, it has been previously
demonstrated that eccentric planets have an enhanced
probability of eclipsing their star (Barnes 2007). It there-
fore follows that the observed distribution of eccentrici-
ties from such objects is positively-biased. A correction
of this bias requires knowledge of the probability dis-
tribution of eccentricity, given that we know the planet
transits. Upon framing the probability in this manner, it
is evident that the problem may be tackled via Bayes’
theorem. Guided by this realization, we here aim to pro-
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thus P(ω|e, aR) → P(ω) given in Equation (4) and finally
P(b̂|e, aR) is given by Equation (7). Using these results,
we find the aR dependency cancels out, indicating that
P(ω |̂b, e, aR) → P(ω |̂b, e), where

P(ω |̂b, e) =
1 + e sinω

2π
. (20)

3.3 Joint Prior Probability

The priors derived thus far are for the univariate case of
P(e|...) and P(ω|...). However, it is often useful to have
the joint probability density function i.e. P(e,ω|...). Con-
sider first the simple scenario of a planet where it is un-
known whether it transits or not. Here, one may define
such a prior using Bayes’ theorem in two equivalent ways:

P(e,ω) = P(ω|e)P(e)

= P(e|ω)P(ω). (21)

Since P(ω|e) is assumed to be independent of e
(Equation 4) and P(e|ω) is assumed to be independent
of ω (Equation 5), then these forms are equivalent to

P(e,ω) =
( 1
2π

)( (1− e)β−1eα−1

B[α, β]

)

. (22)

For transiting planets, adding in the conditional
probability of b̂ yields two equivalent forms

P(e,ω |̂b) = P(ω|e, b̂)P(e|̂b)

= P(e|ω, b̂)P(ω |̂b), (23)

which evaluate to the same solution of

P(e,ω |̂b) =
( β − 1
2πγ̃1Γ[α+ β]

)(1 + e sinω
1− e2

)( (1− e)β−1eα−1

B[α, β]

)

.

(24)

It is important to note that the joint probabil-
ity distribution is not equal to simply multiplying the
two independent priors, as was the case for planets not
known whether they transit. Specifically, whilst it is true
that P(e,ω) = P(e)P(ω), for transiting planets we have
P(e,ω |̂b) ̸= P(e|̂b)P(ω |̂b). The joint probability distribu-
tion therefore includes the conditional dependence be-
tween e and ω (this is illustrated in Figure 5).

When comparing an observed distribution to a
model distribution, it is often useful to consider the CDF
rather than PDF, in order to eliminate the effects of sub-
jectively choosing a bin size (Kipping 2013). To this end,
we here provide the closed-form solution of the joint CDF
C(e,ω |̂b), given by

C(e,ω |̂b) =

∫ e

e′=0

∫ ω

ω′=0

P(e′,ω′ |̂b) de′ dω′,

=
γ3ω(α+ 1) + γ4eα(1− cosω)
2πe−αα(α+ 1)Γ[α]Γ[β − 1]

, (25)

where we define

γ3 = F1(α; 2− β, 1; 1 + α; e,−e), (26)

γ4 = F1(1 + α; 2− β, 1; 2 + α; e,−e). (27)

Sampling from a multivariate joint probability prob-
ability is more elaborate than the univariate case. We
first require expanding the CDF of the joint probability
distribution using the product rule:

C(e,ω |̂b) = C(e|̂b)C(ω|e, b̂). (28)

The relation above indicates that one may first draw
an e sample, e′, using the inverse of C(e|̂b) and then using
this value as a conditional when inverting C(ω|e = e′, b̂)
to obtain an ω sample, ω′.

e′ = C(e|̂b)−1[xe], (29)

ω′ = C(ω|e = e′, b̂)−1[xω], (30)

where xe and xω are uniform random variates and
e′ and ω′ are random variates drawn from P(e,ω |̂b).
The inverse of C(e|̂b)−1[xe] is computed using the recur-
sive relation presented in Equation (15). The inverse of
C(ω|e, b̂)−1 has not yet been found and is distinct from
the inverse of C(ω |̂b)−1, for which we presented a re-
cursive relation earlier in Equation (18). As before, the
inverse requires solving a transcendental equation and
again we find that Newton’s method provides an efficient
solution, using the iterations

ωi+1 = ωi −
ωi − 2πxω + e′(1− cosωi)

1 + e′ sinωi
. (31)

We provide Fortran code, ECCSAMPLES

(download link), to to draw joint {e,ω} samples
from P(e,ω |̂b) using the method described above.
ECCSAMPLES computes F1 using the F1 algorithm by
Colavecchia & Gasaneo (2004) and requires ∼ 500µs
per sample for 1% accuracy on a hyperthreaded Intel
Core i7-3720QM processor. Various special functions
and dependencies required in ECCSAMPLES come from
Majumder & Bhattacharjee (1973), Cran et al. (1977),
Macleod (1989), Zhang & Jin (1996) and Forrey
(1997). An example bivariate histogram of 106 samples
generated by this code is shown in Figure 5.

4 DISCUSSION

4.1 Implications for Occurrence Rate

Estimates

It has been previously established that eccentric plan-
ets have an enhanced probability of transiting their host
star (Barnes 2007). Specifically, one finds P(b̂|e, aR) =
a−1
R (1−e2)−1; a result which we recover in Equation (7).

However, in practice, the thousands of transiting planet
candidates found by the Kepler Mission (Borucki et al.
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1 INTRODUCTION

P(e,ω |̂b) =
P(b̂|e,ω)P(e,ω)

∫ 1
e=0

∫ 2π
ω=0

P(b̂|e,ω)P(e,ω) de dω
(1)

P(b̂|e,ω) =
( 1
aR

)(1 + e sin ω
1− e2

)

(2)

Orbital eccentricity is one of the most fundamental
properties of a planetary orbit. Unlike the planets of the
Solar System, exoplanet eccentricities have been found
to exhibit broad and diverse range (Butler et al. 2006;
Kipping 2013). In a Bayesian sense, our a-priori expec-
tation of a planet’s eccentricity has dramatically shifted
in the past two decades. The apparent prevalence of ec-
centric systems underscores the need for adopting data
models which freely explore both orbital eccentricity and
argument of periapsis. Inaccurate treatment, or a com-
plete lack of consideration, of eccentricity leads to erro-

⋆ E-mail: dkipping@cfa.harvard.edu

neous inferences of the properties of individual systems
and ensemble populations.

The distribution of orbital eccentricities is, how-
ever, more than just a nuisance factor, it repre-
sents the scars of past dynamical activity in plan-
etary systems (Rasio & Ford 1996; Jurić & Tremaine
2008; Chatterjee et al. 2008). For this reason, extract-
ing the underlying eccentricity distribution of exoplan-
ets has become a topic of considerable recent effort (e.g.
Shen & Turner 2008; Wang & Ford 2011; Kane et al.
2012).

Extracting an accurate eccentricity distribution de-
mands that any observational biases be correctly ac-
counted for. For transiting planets, it has been previously
demonstrated that eccentric planets have an enhanced
probability of eclipsing their star (Barnes 2007). It there-
fore follows that the observed distribution of eccentrici-
ties from such objects is positively-biased. A correction
of this bias requires knowledge of the probability dis-
tribution of eccentricity, given that we know the planet
transits. Upon framing the probability in this manner, it
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Figure 4. Histogram (gray bars) of a 106 samples for ω

computed by our ECCSAMPLES code, which computes random
variates in {e,ω} drawn from P(e,ω|b̂), equivalent to drawing
ω from P(ω|b̂). Simulation assumes α = 0.867 and β = 3.03
(Kipping 2013). The histogram provides excellent agreement
to the closed-form PDF (solid) and clearly diverges from a
prior which does not account for the fact the planet is tran-
siting (dashed).

we find the aR dependency cancels out, indicating that
P(ω |̂b, e, aR) → P(ω |̂b, e), where

P(ω |̂b, e) =
1 + e sinω

2π
. (21)

3.3 Joint Prior Probability

The priors derived thus far are for the univariate case of
P(e|...) and P(ω|...). However, it is often useful to have
the joint probability density function i.e. P(e,ω|...). Con-
sider first the simple scenario of a planet where it is un-
known whether it transits or not. Here, one may define
such a prior using Bayes’ theorem in two equivalent ways:

P(e,ω) = P(ω|e)P(e)

= P(e|ω)P(ω). (22)

Since P(ω|e) is assumed to be independent of e
(Equation 5) and P(e|ω) is assumed to be independent
of ω (Equation 6), then these forms are equivalent to

P(e,ω) =
( 1
2π

)( (1− e)β−1eα−1

B[α, β]

)

. (23)

For transiting planets, adding in the conditional
probability of b̂ yields two equivalent forms

P(e,ω |̂b) = P(ω|e, b̂)P(e|̂b)

= P(e|ω, b̂)P(ω |̂b), (24)

which evaluate to the same solution of

P(e,ω |̂b) =
( β − 1
2πγ̃1Γ[α+ β]

)(1 + e sinω
1− e2

)( (1− e)β−1eα−1

B[α, β]

)

.

(25)

It is important to note that the joint probabil-
ity distribution is not equal to simply multiplying the
two independent priors, as was the case for planets not
known whether they transit. Specifically, whilst it is true
that P(e,ω) = P(e)P(ω), for transiting planets we have
P(e,ω |̂b) ̸= P(e|̂b)P(ω |̂b). The joint probability distribu-
tion therefore includes the conditional dependence be-
tween e and ω (this is illustrated in Figure 5).

When comparing an observed distribution to a
model distribution, it is often useful to consider the CDF
rather than PDF, in order to eliminate the effects of sub-
jectively choosing a bin size (Kipping 2013). To this end,
we here provide the closed-form solution of the joint CDF
C(e,ω |̂b), given by

C(e,ω |̂b) =

∫ e

e′=0

∫ ω

ω′=0

P(e′,ω′ |̂b) de′ dω′,

=
γ3ω(α+ 1) + γ4eα(1− cosω)
2πe−αα(α+ 1)Γ[α]Γ[β − 1]

, (26)

where we define

γ3 = F1(α; 2− β, 1; 1 + α; e,−e), (27)

γ4 = F1(1 + α; 2− β, 1; 2 + α; e,−e). (28)

Sampling from a multivariate joint probability prob-
ability is more elaborate than the univariate case. We
first require expanding the CDF of the joint probability
distribution using the product rule:

C(e,ω |̂b) = C(e|̂b)C(ω|e, b̂). (29)

The relation above indicates that one may first draw
an e sample, e′, using the inverse of C(e|̂b) and then using
this value as a conditional when inverting C(ω|e = e′, b̂)
to obtain an ω sample, ω′.

e′ = C(e|̂b)−1[xe], (30)

ω′ = C(ω|e = e′, b̂)−1[xω], (31)

where xe and xω are uniform random variates and
e′ and ω′ are random variates drawn from P(e,ω |̂b).
The inverse of C(e|̂b)−1[xe] is computed using the recur-
sive relation presented in Equation (16). The inverse of
C(ω|e, b̂)−1 has not yet been found and is distinct from
the inverse of C(ω |̂b)−1, for which we presented a re-
cursive relation earlier in Equation (19). As before, the
inverse requires solving a transcendental equation and
again we find that Newton’s method provides an efficient
solution, using the iterations

ωi+1 = ωi −
ωi − 2πxω + e′(1− cosωi)

1 + e′ sinωi
. (32)
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Fig. 3.— Calculation of the transit probability. Left.—Transits are visible by observers within the penumbra of the planet, a cone with
opening angleΘ with sinΘ = (R⋆+Rp)/r, where r is the instantaneous star-planet distance. Right.—Close-up showing the penumbra
(thick lines) as well as the antumbra (thin lines) within which the transits are full, as opposed to grazing.

are tangent at four contact times tI–tIV, illustrated in Fig-
ure 2. (In a grazing eclipse, second and third contact do
not occur.) The total duration is Ttot = tIV − tI, the
full duration is Tfull = tIII − tII, the ingress duration is
τing = tII − tI, and the egress duration is τegr = tIV − tIII.
Given a set of orbital parameters, the various eclipse du-

rations can be calculated by setting equation (5) equal to
R⋆ ± Rp to find the true anomaly at the times of contact,
and then integrating equation (44) of the chapter by Murray
and Correia, e.g.,

tIII − tII =
P

2π
√
1− e2

∫ fIII

fII

[

r(f)

a

]2

df. (13)

For a circular orbit, some useful results are

Ttot ≡ tIV − tI =
P

π
sin−1

[

R⋆

a

√

(1 + k)2 − b2

sin i

]

, (14)

Tfull ≡ tIII − tII =
P

π
sin−1

[

R⋆

a

√

(1 − k)2 − b2

sin i

]

.

(15)
For eccentric orbits, good approximations are obtained by
multiplying equations (14-15) by

Ẋ(fc) [e = 0]

Ẋ(fc)
=

√
1− e2

1± e sinω
, (16)

a dimensionless factor to account for the altered speed of
the planet at conjunction. Here, “+” refers to transits and
“−” to occultations. One must also compute b using the
eccentricity-dependent equations (7-8).
For an eccentric orbit, τing and τegr are generally unequal

because the projected speed of the planet varies between

ingress and egress. In practice the difference is slight; to
leading order in R⋆/a and e,

τe − τi
τe + τi

∼ e cosω

(

R⋆

a

)3
(

1− b2
)3/2

, (17)

which is <10−2 e for a close-in planet with R⋆/a = 0.2,
and even smaller for more distant planets. For this reason
we will use a single symbol τ to represent either the ingress
or egress duration. Another important timescale is T ≡
Ttot − τ , the interval between the halfway points of ingress
and egress (sometimes referred to as contact times 1.5 and
3.5).
In the limits e → 0, Rp ≪ R⋆ ≪ a, and b ≪ 1 − k

(which excludes near-grazing events), the results are greatly
simplified:

T ≈ T0

√

1− b2, τ ≈
Tok√
1− b2

, (18)

where T0 is the characteristic time scale

T0 ≡
R⋆P

πa
≈ 13 hr

(

P

1 yr

)1/3 ( ρ⋆
ρ⊙

)−1/3

. (19)

For eccentric orbits, the additional factor given by equa-
tion (16) should be applied. Note that in deriving equa-
tion (19), we used Kepler’s third law and the approximation
Mp ≪ M⋆ to rewrite the expression in terms of the stel-
lar mean density ρ⋆. This is a hint that eclipse observations
give a direct measure of ρ⋆, a point that is made more ex-
plicit in Section 3.1.

2.4 Loss of light during eclipses

The combined flux F (t) of a planet and star is plotted
in Figure 1. During a transit, the flux drops because the

4

(Winn 2011)
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informative priors: observational bias

this gets even more tricky if we consider conditioning on both geometric bias 
and detection bias (e.g. apoapsis transits are longer => more detectable)

(Kipping & 
Sandford 2016)
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Figure 7. Solid colored lines show Pr(w| ˆ

d, ˆ

b), whereas dashed
lines show Pr(w|ˆb) for comparison, using the same inputs. Includ-
ing detection bias suppresses the strong bias towards periastron
transits.

Pr(e| ˆ

d, ˆ

b) µ Pr(e)
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2)3/4
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1� eE

h
2e

e�1

i
+
p

1+ eE

h
2e

e+1

i!
,

(47)

where E(x) is the complete elliptic integral of x. The
above is essentially an exponential-like function multiplied
by the intrinsic e prior and thus distorts the observed eccen-
tricity distribution towards more elliptical orbits than the
true underlying distribution.

4.3.4 The case of w

Repeating this trick for w is more challenging and is func-
tionally dependent upon the assumed form for Pr(e). In what
follows, we adopt a Beta distribution for e, for reasons dis-
cussed in Kipping (2013). Whilst a closed-form expression
was not found, numerically marginalizing over e for three
di↵erent choices of the Beta shape parameters allows us to
visualize the e↵ect of the detection bias, as shown in Fig-
ure 7.

In this figure, we compare the results of including both
detection bias and geometric bias (this work), versus the ge-
ometric bias alone (expressions of Kipping 2014). It is clear
that our expressions significantly suppress the w biases, lead-
ing to a population more evenly distributed with respect to
w. This can be understood by considering that apoastron
transits, whilst geometrically disfavoured, have a significant
detection enhancement due to their longer transit durations.

5 DISCUSSION

In this work, we have derived the joint probability distribu-
tion of the basic transit parameters conditioned upon two
observational biases a↵ecting this type of measurement: ge-
ometric bias and detection bias. By treating the transit as
a trapezoid, accounting for grazing events, and using condi-
tional probability theory, we have derived an analytic, closed
form for these biases (see Equation 34).

Figure 8. Distribution of the transit impact parameter for the
sample of Kepler planetary candidates studied in Swift et al.
(2015). The measured distribution (green) is reasonably well ap-
proximated by the (simple case) prior Pr(b| ˆ

d, ˆ

b) of Equation (27)
derived in this work.

Whereas previous works have used analytic arguments
to predict the detection yields of transit surveys subject to
observational biases (e.g. Beatty & Gaudi 2008), the focus
here is the distortion of the observed transit parameter dis-
tributions away from those of the underlying exoplanet pop-
ulation. Inferences about the properties of Kepler planets are
strongly a↵ected by geometric and detection bias, and our
work provides a general framework to interpret the observed
trends.

Our work is not intended to replace numerical
Monte Carlo simulations, which typically perform injec-
tion/recovery tests through a detection pipeline (e.g. see Pe-
tigura et al. 2013; Christiansen et al. 2015; Dressing & Char-
bonneau 2015). These results, tailored to a specific mission,
have both advantages in their flexibility and disadvantages
in obscuring the mechanisms responsible for various trends.
In this sense, our work complements numerical e↵orts by
providing insight into what observational trends are inher-
ent to the transit technique, rather than e↵ects localized
to a particular survey. We highlight here several important
results from our work.

We predict that observational bias should lead to a non-
uniform distribution in the impact parameters of detected
transiting planets. This prediction may be tested with the
Kepler catalog, for which we turn to Swift et al. (2015),
who derived homogeneous posterior distributions for the ba-
sic transit parameters, including b, of 163 Kepler planetary
candidates. The cumulative distributions of these terms are
shown in Figure 9 of that work, of which we reproduce a
version in Figure 8 here.

Despite the fact that Swift et al. (2015) impose a uni-
form prior on b, the overall distribution drops o↵ at high
b, reproducing our expectation that such cases are indeed
less frequent in a SNR-limited survey like Kepler. Figure 8
compares the measured distribution to that predicted by
our function Pr(b| ˆ

d, ˆ

b) in the simple case2 of Equation (27),
which displays a reasonable match to the observed shape.

2 Since the more advanced distribution displays covariance be-
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Figure 7. Solid colored lines show Pr(w| ˆ

d, ˆ

b), whereas dashed
lines show Pr(w|ˆb) for comparison, using the same inputs. Includ-
ing detection bias suppresses the strong bias towards periastron
transits.
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where E(x) is the complete elliptic integral of x. The
above is essentially an exponential-like function multiplied
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tion of the basic transit parameters conditioned upon two
observational biases a↵ecting this type of measurement: ge-
ometric bias and detection bias. By treating the transit as
a trapezoid, accounting for grazing events, and using condi-
tional probability theory, we have derived an analytic, closed
form for these biases (see Equation 34).
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here is the distortion of the observed transit parameter dis-
tributions away from those of the underlying exoplanet pop-
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strongly a↵ected by geometric and detection bias, and our
work provides a general framework to interpret the observed
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Monte Carlo simulations, which typically perform injec-
tion/recovery tests through a detection pipeline (e.g. see Pe-
tigura et al. 2013; Christiansen et al. 2015; Dressing & Char-
bonneau 2015). These results, tailored to a specific mission,
have both advantages in their flexibility and disadvantages
in obscuring the mechanisms responsible for various trends.
In this sense, our work complements numerical e↵orts by
providing insight into what observational trends are inher-
ent to the transit technique, rather than e↵ects localized
to a particular survey. We highlight here several important
results from our work.

We predict that observational bias should lead to a non-
uniform distribution in the impact parameters of detected
transiting planets. This prediction may be tested with the
Kepler catalog, for which we turn to Swift et al. (2015),
who derived homogeneous posterior distributions for the ba-
sic transit parameters, including b, of 163 Kepler planetary
candidates. The cumulative distributions of these terms are
shown in Figure 9 of that work, of which we reproduce a
version in Figure 8 here.

Despite the fact that Swift et al. (2015) impose a uni-
form prior on b, the overall distribution drops o↵ at high
b, reproducing our expectation that such cases are indeed
less frequent in a SNR-limited survey like Kepler. Figure 8
compares the measured distribution to that predicted by
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b) in the simple case2 of Equation (27),
which displays a reasonable match to the observed shape.
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geometric biasdetection bias

detection bias suppresses observational  
bias towards periapsis transits

also: we don’t know what 
observational bias of RVs are!! 
(stay tuned via Chen & Kipping)
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Table 1. Using the observed eccentricities of 396 exoplanets from www.exoplanets.org, we display the results of regressing several CDFs.
Along with the parameters (columns 3-5) we also show the Bayesian evidence (column 2) of each regression (higher is better).

Distribution Evidence Parameter 1 Parameter 2 Parameter 3

Uniform[emin,emax] −664.761 ± 0.053 0.90+1.48
−0.66 × 10−4 0.6071+0.0037

−0.0037 -

Beta[a,b] +374.705 ± 0.046 0.867+0.044
−0.044 3.03+0.17

−0.16 -

Rayleigh+Exp[α,σ,λ] +373.400 ± 0.049 0.781+0.083
−0.132 0.272+0.021

−0.036 5.12+1.44
−0.61

Uniform+Exp[α,σ,emax] +332.506 ± 0.054 0.1292+0.069
−0.070 0.2229+0.0051

−0.0048 0.559+0.037
−0.035

ST08[k,a] +371.475 ± 0.051 0.2431+0.0060
−0.0059 4.33+0.18

−0.18 -
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Figure 2. Left: CDF of e for 396 extrasolar planets (grey bars), taken from www.exoplanets.org (Wright et al. 2011). The red line
shows the smallest step size CDF. The black solid line shows the fitted Beta distribution and the green dashed line shows the fitted
Rayleigh+exponential distribution. Although there is negligible difference between the latter two, the Beta distribution requires one less
shape parameter and is preferred in a Bayesian sense. Right: PDF of the same data (grey bars). We also show 100 random draws (blue
lines) from the joint posterior of the Beta distribution parameters and the best fit in solid black. The range between the coloured lines
illustrates the model uncertainty.
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Figure 3. Probability density distribution of e for 396 extrasolar
planets (black bars), taken from www.exoplanets.org. The error
bars shown are computed using Poisson counting statistics. The
red-dashed histogram shows a PDF of a synthetic population gen-
erated using the maximum likelihood parameters of a Beta dis-
tribution regressed to the observed sample. Using just two shape
parameters, the fitted Beta distribution is fully consistent with
the observed distribution.

are computed using the same method described in §3.1. The
CDFs are then fitted with global shape parameters for hy-
pothesis H1 and local shape parameters for hypothesis H2.

The results of this exercise are shown in Table 2. We
note that the global fit retrieves slightly different parame-
ters than those found when using a single CDF function.
Parameter a is found to differ by 2.4 σ and b by 1.8 σ. We
attribute this difference to the binning procedure where the
number of unique eccentricities defines the maximum reso-
lution possible when constructing a CDF. As a result, the
combined CDF result will have the higher resolution and
thus greater reliability.

The Bayesian evidence yields an 11.6 σ preference for
hypothesis H2. We therefore conclude that there is a sig-
nificant difference between the eccentricity distributions of
short- and long-period exoplanets. Furthermore, the short-
period planets show a larger fraction of low-eccentricity
planets relative to the flatter distribution found for long-
period planets (see Fig. 4). This is consistent with the effects
of tidal circularization (Rasio & Ford 1996).

4 DISCUSSION & CONCLUSIONS

We have shown how the Beta distribution is a useful tool for
parametrizing the distribution of exoplanet orbital eccentric-

distribution of X from 
detection method Y

treat as a prior for P(X) 
for analyzing data from 

detection method Z
distribution of X from 
detection method Y
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Figure 5. Three-dimensional histograms of 106 samples of
{e,ω} computed by ECCSAMPLES, which reproduce P(e,ω) (top)
and P(e,ω|b̂) (bottom). Simulations assume α = 0.867 and
β = 3.03 (Kipping 2013). The conditional dependence be-
tween e and ω is evident in the lower panel.

We provide Fortran code, ECCSAMPLES

(download link), to to draw joint {e,ω} samples
from P(e,ω |̂b) using the method described above.
ECCSAMPLES computes F1 using the F1 algorithm by
Colavecchia & Gasaneo (2004) and requires ∼ 500µs
per sample for 1% accuracy on a hyperthreaded Intel
Core i7-3720QM processor. Various special functions
and dependencies required in ECCSAMPLES come from
Majumder & Bhattacharjee (1973), Cran et al. (1977),
Macleod (1989), Zhang & Jin (1996) and Forrey
(1997). An example bivariate histogram of 106 samples
generated by this code is shown in Figure 5.

4 DISCUSSION

4.1 Implications for Occurrence Rate

Estimates

It has been previously established that eccentric plan-
ets have an enhanced probability of transiting their host
star (Barnes 2007). Specifically, one finds P(b̂|e, aR) =

a−1
R (1−e2)−1; a result which we recover in Equation (8).

However, in practice, the thousands of transiting planet
candidates found by the Kepler Mission (Borucki et al.
2009; Batalha et al. 2013) do not have individually mea-
sured eccentricities. For this reason, calculations us-
ing the ensemble population, such as planet occurrence
rate estimates, require marginalizing out the eccentricity
term.

The marginalized transit probability, P(b̂|aR), has
been previously discussed in Burke (2008). In order to
perform this marginalization, an assumption for the prior
P(e) is required. Recall that in this work, we use the Beta
distribution for P(e), due its compact yet flexible form
and since it currently provides the best description of the
observed eccentricity distribution (Kipping 2013). With-
out the hundreds of well-measured eccentricities avail-
able by the time of Kipping (2013), Burke (2008) used a
piece-wise distribution of the form

P(e) =

⎧

⎪

⎨

⎪

⎩

2
ecrit+emax

0 ! e ! ecrit
2

ecrit+emax

(e−emax)
(ecrit−emax)

ecrit < e ! emax

0 emax < e < 1

.

(33)
Using this prior with ecrit = 0.25 and emax = 0.92,

Burke (2008) estimate that the marginalized transit
probability is enhanced by ∼ 25% relative to an assump-
tion of circularity. In this work, we find that the transit
probability is enhanced via Equation (12). Drawing sam-
ples of α and β from the posterior distributions derived
in Kipping (2013), we estimate an enhancement factor of
13.08+0.80

−0.71% for all planets in the Kipping (2013) sample
and 8.70+1.08

−0.90% for planets in the “short-period” sam-
ple (< 382.3 d). In both cases, we favour a much lower
overall enhancement factor than Burke (2008).

In conclusion, eccentricity enhances the transit prob-
ability by ∼ 10%, with the exact value depending upon
the sub-population in question. One important implica-
tion of this result is with respect to planet occurrence
rate calculations from transit surveys. In order to com-
pute the occurrence rate, one must account for the fact
that only planets with the correct geometry transit i.e.
many more planets exist than are actually observed.
We note that many recent studies of the planet occur-
rence rate from the Kepler Mission have implicitly as-
sumed that all planets are on circular orbits by assum-
ing a transit probability P(b̂|aR) = a−1

R (Howard et al.
2012; Dong & Zhu 2013; Dressing & Charbonneau 2013;
Petigura et al. 2013). This effectively ignores the intrin-
sic bias of the transit technique towards eccentric planets.
It can therefore be seen that all of these afore mentioned
occurrence rate calculations have overestimated the true
rate by ∼ 10%.

As an example, Dressing & Charbonneau (2013) es-
timate 0.90+0.04

−0.03 planets per star for M-dwarfs with pe-
riods below 50 d. Using the “short-period” posterior dis-
tributions for α and β computed by Kipping (2013),
we estimate that this occurrence rate would be modi-
fied to 0.83+0.04

−0.03 planets per star, which is > 2σ de-
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Figure 5. Three-dimensional histograms of 106 samples of
{e,ω} computed by ECCSAMPLES, which reproduce P(e,ω) (top)
and P(e,ω|b̂) (bottom). Simulations assume α = 0.867 and
β = 3.03 (Kipping 2013). The conditional dependence be-
tween e and ω is evident in the lower panel.

We provide Fortran code, ECCSAMPLES

(download link), to to draw joint {e,ω} samples
from P(e,ω |̂b) using the method described above.
ECCSAMPLES computes F1 using the F1 algorithm by
Colavecchia & Gasaneo (2004) and requires ∼ 500µs
per sample for 1% accuracy on a hyperthreaded Intel
Core i7-3720QM processor. Various special functions
and dependencies required in ECCSAMPLES come from
Majumder & Bhattacharjee (1973), Cran et al. (1977),
Macleod (1989), Zhang & Jin (1996) and Forrey
(1997). An example bivariate histogram of 106 samples
generated by this code is shown in Figure 5.

4 DISCUSSION

4.1 Implications for Occurrence Rate

Estimates

It has been previously established that eccentric plan-
ets have an enhanced probability of transiting their host
star (Barnes 2007). Specifically, one finds P(b̂|e, aR) =

a−1
R (1−e2)−1; a result which we recover in Equation (8).

However, in practice, the thousands of transiting planet
candidates found by the Kepler Mission (Borucki et al.
2009; Batalha et al. 2013) do not have individually mea-
sured eccentricities. For this reason, calculations us-
ing the ensemble population, such as planet occurrence
rate estimates, require marginalizing out the eccentricity
term.

The marginalized transit probability, P(b̂|aR), has
been previously discussed in Burke (2008). In order to
perform this marginalization, an assumption for the prior
P(e) is required. Recall that in this work, we use the Beta
distribution for P(e), due its compact yet flexible form
and since it currently provides the best description of the
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in Kipping (2013), we estimate an enhancement factor of
13.08+0.80
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and 8.70+1.08
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ple (< 382.3 d). In both cases, we favour a much lower
overall enhancement factor than Burke (2008).
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ability by ∼ 10%, with the exact value depending upon
the sub-population in question. One important implica-
tion of this result is with respect to planet occurrence
rate calculations from transit surveys. In order to com-
pute the occurrence rate, one must account for the fact
that only planets with the correct geometry transit i.e.
many more planets exist than are actually observed.
We note that many recent studies of the planet occur-
rence rate from the Kepler Mission have implicitly as-
sumed that all planets are on circular orbits by assum-
ing a transit probability P(b̂|aR) = a−1
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Petigura et al. 2013). This effectively ignores the intrin-
sic bias of the transit technique towards eccentric planets.
It can therefore be seen that all of these afore mentioned
occurrence rate calculations have overestimated the true
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As an example, Dressing & Charbonneau (2013) es-
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−0.03 planets per star for M-dwarfs with pe-
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P(𝚯|𝒟,𝓜) ∝ P(𝒟|𝚯,𝓜)P(𝚯|𝓜)

𝓟 ∝ 𝓛 π

log𝓟 ∝ log(𝓛 π)

log𝓟 ∝ log𝓛 + logπ

so just add on log(prior probability)

can think of as being loglike penalization

log probabilities more 
numerically stable

implementing priors: log-like penalization



π(x) =
exp(-½(x-μ)2/σ2)

(2π)½σ

example: a normal distribution prior, N(μ,σ)

logπ = -½log(2π) - ½log(σ2) - ½(x-μ)2/σ2

unless you want the evidence, can ignore constants

logπ = - ½(x-μ)2/σ2

(highest prior probability occurs when x=μ, as expected)

implementing priors: log-like penalization
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implementing priors: inverse sampling

a

b
b m

in
b m

ax

amin amax

accepted jumps have to be a 
i) high ℒ ii) high π

everytime we compute logπ and 
make essentially blind jumps

but a more elegant solution is 
sometimes possible, by drawing 
a sample directly from the prior

drawing a random.normal() 
won’t work though, as we need 

to “walk” in the parameter in 
order to build a Markov chain

likelihood, ℒ

prior, π

this is possible with inverse 
transform sampling



implementing priors: inverse sampling

x x0 0

f(x) F(x)

F(x) = ∫-∞ f(x’) dx’x

0

f(x=0)

0

1

for a proper prior, 0<F(x)<1



implementing priors: inverse sampling
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but is just random samples, does not 
constitute walking



implementing priors: inverse sampling

x

F(x)
but it’s fairly straight forward to just walk in the 

F(x) space, and convert into a x sample

0

1

in the limit of no likelihood, Markov chain will be a 
uniform chain in F(x) => normal dist in x, as required

if you do this, don’t do log-
like penalization as well!
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b
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in
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ax

amin amax

likelihood, ℒ

prior, π

inverse transform sampling is 
optimally efficient for exploring 

the prior volume

easy to implement for standard 
1D distributions

because of this, some 
Bayesian inference packages 

sample from the priors 
exclusively in this way e.g. 

MultiNest (Feroz 2008,2009)

but, 2D and non-standard 
distributions (that one might 

derive when doing observational 
priors) can be intractable
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transits RVs
P ~ log-uniform

e ~ Beta corrected & w ~ uniform
or e½sinw & e½cosw ~ uniform

p=RP/R* ~ uniform or log-uniform

b or cos(i) ~ uniform

a/R* or ⍴* ~ log-uniform

tmid ~ uniform

q1/q2 or 𝛼h/𝛼r/𝛼θ ~ uniform

(Foreman-Mackey+ 2013)

(Kipping 2013b/2016)

(Kipping 2014; Kipping & Sandford 2016)

(Ford 2006)

K ~ modified log-uniform

or K~ uniform to -ve

(Ford & Gregory 2007, Balan & Lahav 2008)

s ~ modified log-uniform
(Ford & Gregory 2007, Balan & Lahav 2008)

if following up a known transiter

tconj~ uniform
be warned that tconj≠tmid for e>0

not the “right” answer, just my 
personal recommendations, 

although I would always think about 
the specifics of my problem!
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1] everywhere positive: I(μ)>0 

2] monotonically decreasing form surface to limb: dI/dμ>0 

I(μ) = 1 - u1(1-μ) - u2(1-μ)2

u1+u2 < 1 u1 > 0 u1+2u2 > 0
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!0.2
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0.8

1.0

1.2

v1"u1!2

v 2
"
1!
u 1
!
u 2

v1 = q1½ q2 
v2 = 1-q1½

thanks computer 
games!

q1 = (u1+u2)2 
q2 = ½u1(u1+u2)-1 

Kipping (2013b)



I(μ) = 1 - u1(1-μ) - u2(1-μ)2

non-linear law I(μ) = 1 - c1(1-μ1/2) - c2(1-μ) - c1(1-μ3/2) - c2(1-μ2)

quadratic law 

I can’t imagine 4-dimensions, so no. 
I can imagine 3 though! 

Sing (2010) argue that dropping the c1 term is motivated by 
Solar data (Neckel & Labs 1994) and 3D stellar models (Bigot 
et al. 2006), which show that I(μ) varies smoothly at small μ, 

meaning that a μ1/2 term is superfluous 

3-parameter law I(μ) = 1 - c2(1-μ) - c1(1-μ3/2) - c2(1-μ2)



re-scale axes to push loci inside the unitary cube 
then rotate the loci round aligning envelope with the 



next again re-scale to inside the unitary cube  
then re-align cone’s apex to y-axis



finally use standard method for sampling from a 
cone to re-parameterize into alpha
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that the cone’s apex is located at the origin and the cone
points along the e3-axis. We accomplish this using an addi-
tional change of variables:

g2 =
f2 − f4

2
, (56)

g3 = f3, (57)

g4 =
f2 + f4√

2
, (58)

where we have additionally normalized g2 by a factor of√
2 to allow the loci to be symmetric on the g2-g3 plane.

In this frame, our cone now has an apex at zero, with a

height of H = ( 10
√

2
3

−4) and a radius of R = 1/
√

2, as shown
in Fig. 6. Writing out the g terms relative to the original ci

coefficients, we have:

g2 =
1

72
√

2

(

(6
√

2−56)c2 +(−6
√

2−45)c3 +(6
√

2−56)c4

)

,

(59)

g3 =
1

6

(

c4 −c2

)

, (60)

g4 =
1

72

(

(42
√

2−8)c2 +(30
√

2+9)c3 +(42
√

2−8)c4

)

. (61)

For which the inverse relations are:

c2 =
(

3

2
+5

√
2

)

g2 −3g3 +
(

1+
15

2
√

2

)

, (62)

c3 =
(

8

3
−14

√
2

)

g2 +
(

2−
28
√

2

3

)

g4, (63)

c4 =
(

3

2
+5

√
2

)

g2 +3g3 +
(

1+
15

2
√

2

)

g4. (64)

5.5 Sampling from the Conal Region

The samples shown in Fig. 6 appear consistent with points
uniformly drawn from within the volume of a cone. We here
describe the mathematical formalism by which one can com-
pute such samples.

Samples may be drawn from a cone by first consider-
ing how to draw samples uniformly from within a circle.
This well-known problem can be tackled by using polar co-
ordinates and drawing a random polar angle θ in the range
0 to 2π radians and a random radius r from a triangular
distribution between 0 and ρ, where ρ is the full radius. We
now note that the radius varies as a function of height, h,
along the cone, such that ρ(h) = Rh/H. Finally, h is drawn
from a quadratic power law distribution from 0 to H (the full
height), since the area of a circle increases as ρ2. Drawing
a random uniform variate for αθ , αh and αr between 0 and
1, the polar angles, height and radius of a point uniformly
drawn from within the cone may be expressed as:

θ = 2παθ , (65)

h = Hα
1/3

h , (66)

r =
Rh

√
αr

H
. (67)

Converting these into Cartesian elements, we have:

Figure 6. Same as Fig. 4, except the coordinates have been
transformed from {c2,c3,c4}→ {g2,g3,g4}. In this parametrization,
the green points are well described by a cone of radius, R = 1/2

and height, H = (−4+10
√

2/3).

g2 = r sinθ , (68)

g3 = r cosθ , (69)

g4 = h. (70)

Or more explicitly:

g2 = Rα
1/3

h α
1/2
r sin(2παθ ), (71)

g3 = Rα
1/3

h α
1/2
r cos(2παθ ), (72)

g4 = Hα
1/3

h . (73)

We may also express the ci coefficients in terms of the
uniform random variates, αi:

c2 =
α

1/3

h

12

(

28(9−5
√

2)

+3α
1/2
r

(

−6cos(2παθ )+(3+10
√

2sin(2παθ )
)

)

, (74)

c3 =
α

1/3

h

9

(

−632+396
√

2

+3α
1/2
r (4−21

√
2)sin(2παθ )

)

, (75)

c4 =
α

1/3

h

12

(

28(9−5
√

2)

+3α
1/2
r

(

6cos(2παθ )+(3+10
√

2sin(2παθ )
)

)

. (76)

One may now work in the α parameter space, drawing

MNRAS 000, 1–12 (2015)

using the alpha parameterization, we draw the green samples, which 
encompass 94.4% of the total allowed region

due to slight modification of assuming a perfect cone, 97.3% of the samples 
drawn using the alpha-parameterization satisfy the initial conditions

the remaining 2.7% unphysical samples can be easily removed with a rejection 
algorithm check afterwards (this check is fully analytic!)

94.4% completeness

97.3% validity

ensuring 100% validity

https://github.com/davidkipping/LDC3

https://github.com/davidkipping/LDC3

