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Without something to compare to, 

FML is not very useful... 
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Takeaway #1: 

model comparison ≠ model selection 
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Why model comparison ≠ model selection 

Model comparison just gives probabilities. 
Model selection is a decision based on other 
(outside) factors, i.e. a cost function/utility. 
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Model comparison just gives probabilities. 
Model selection is a decision based on other 
(outside) factors, i.e. a cost function/utility. 
 
Most rigorous thing to do is average all models, 
not select the most probable. 
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Computing FML in practice 
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Computing FML in practice 
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Takeaway #2: 
This integral is HARD * 

* but there’s an entire literature on how to compute this efficiently 
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Thermodynamic Integration (Theory) 

1. Start with parallel-tempering MCMC. 
 i.e. multiple MCMCs with likelihoods taken to 
 different powers: 
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1. Start with parallel-tempering MCMC. 
 i.e. multiple MCMCs with likelihoods taken to 
 different powers: 

 
2. FML at      is 
 
3. Ultimately, derive...  
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Thermodynamic Integration (Practice) 

Advantages: 
 1. A nice side effect of performing PTMCMC 
 2. Already implemented in emcee* 

 
Caveats: 

 Need a robust estimate of  
 at every  
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*dan.iel.fm/emcee/current/user/pt 



Importance Sampling (Theory) 
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PC Guo Thesis 2012 
Weinberg+ 2013 
Nelson+ 2016 
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PC Guo Thesis 2012 
Weinberg+ 2013 
Nelson+ 2016 

Fraction of MCMC samples 
to reside in subspace τ 
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Importance Sampling (Practice) 

Advantages: 
 1. Embarrassingly parallel 
 2. Have a posterior sample? Already partway there! 

 
Caveats: 

 1. Performance depends on chosen   or 
 2. Needs a robust value of fMCMC 
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Importance Sampling (Gliese 876) 
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Nelson+ 2016 

Seth Pritchard 
(undergrad at 

 UT San Antonio) 



Importance Sampling (Tutorial) 
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github.com/benelson/FML 
 

Features: 
-  generate synthetic RVs of input planetary system 
-  MCMC with n-body model 
-  step-by-step importance sampling tutorial 

 
 



Importance Sampling (Tutorial) 
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Nelson+ 2016 

github.com/benelson/FML 
 

Features: 
-  generate synthetic RVs of input planetary system 
-  MCMC with n-body model 
-  step-by-step importance sampling tutorial 

Also check out John Boisvert’s (UNLV) poster 
Uncovering System Architectures Near 2:1 Resonance 



 
Nested Sampling 

 Science: determining evidence for exomoons (Kipping+ 2013], functional  
  form of eccentricity distribution (Kipping 2013), testing n-planets in RV 
  observations (Brewer & Donovan 2015) 
 Publicly available code: Multinest (Feroz & Hobson 2008, Feroz 2009),  
  DNest3/4 (Brewer+ 2010), Transdimensional MCMC (Brewer &  
  Donovan 2015) 

 
Geometric Path Monte Carlo 

 Science: testing n-planets in RV observations (Hou, Goodman, Hogg 2014) 

 
Savage-Dickey Density Ratio 

 Specializes in comparing nested models with 1-2 parameter difference 
 Science: Mass of Mars-sized Kepler-138b (Jontof-Hutter+ 2016) 
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Cross-validation 
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cvl = 1.; 
for (d in data){ 

 get parameters       that optimize on data WITHOUT d; 
 

 cvl *=         ; }   
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Cross-validation 

✓(d)
p(d|✓(d),M)The model with the largest 
cross-validation likelihood 

(cvl) is preferred. 

 
cvl = 1.; 
for (d in data){ 

 get parameters       that optimize on data WITHOUT d; 
 

 cvl *=         ; }   



Takeaway #3: General Recommendations 
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1.  Do you need to make many rough decisions 
quickly (i.e. milliseconds)? 

  AIC/BIC 
 

2.  Do you have decent computational resources 
and really understand your priors/utility? 

  Bayes factor/posterior odds ratio 
 

3.  Is your problem somewhat in between? 
  Cross-validation 



Conclusions 
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model comparison ≠ model selection: how to 
decide depends on your utility 
 
For 3+ parameter models, computing FML is hard. 
But it’s an active problem in exoplanet research. 
 
For tutorial on using importance sampling to 
compute FMLs: github.com/benelson/FML 
 
 
 
 
 


