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PART 1

Finding Planets with Microlensing



  

Source

Lens – host & its planet(s)

Observer

Microlensing Events



  

Lensing Geometry

Lens equation Angular Einstein ring Physical Einstein ring



  

Gravitational Lensing Regimes
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Stars as Lenses

Looking towards Galactic bulge:

Mass ~ 0.5 Msun 

Distances: lens~6 kpc source~8 kpc

RE ~ 2.5 AU  θE ~ 0.4 milli-arcsec

Bulge stars have proper motions μ ~ 6 mas/yr

Microlensing is transient.
 

Event Timescale  tE ≡ θE/μrel ~ 25 days



  

Microlensing Events I

Gaudi (2012)
Parameters:
1. Impact parameter u0

2. Peak time t0

3. Event timescale tE Magnification



  

Microlensing Events II

t0

tE

u0

Only the timescale contains physical information 
about the lens:



  

Planetary microlensing

Gaudi 2012



  

Caustics

Gaudi (2010)



  

Three regimes of caustics



  

Three regimes of caustics



  

High-magnification events

● Implies the source will pass close to the lens
● Virtually 100% planet detection efficiency

● But rare, and close 
and wide separation 
planets v. 
degenerate



  

Projected separation (s)           Mass ratio (q)  



  

Inferring planet parameters

Figure by D Bennett

Duration and amplitude of 
deviation determined by 
planet mass



  

Planetary systems - perturbations

q = (ratio of durations)2 s = time of deviation/tE

   ~ (0.5/40)2                            ~ 10/10 ~ 1

   ~10-4; x0.3Msun=15MEarth      ~ x rE ~ 2 AU



  

Searching for Planets - Requirements

● Goal: Find 10 planets/year

Jupiters Earths

Find 10/year 10 planets 10 planets

Detection efficiency ~10%     100 events ~1%     1000 events

Event rate (star-1 year-1) ~10-5          107 stars ~10-5          108 stars

Stellar density (star deg-2) ~107 (ground) 108 (space)

Image Resolution (arcsec) ~1.1 ~0.36

Survey Duration >2 t
E
       >2 months >2xt

E
       >2 months

Survey Cadence >3/t
E,Jup

         >4/day >3/t
E,Earth

       >3/hour

Survey Area >deg^2 >deg^2



  

Microlensing planet search v1.0
Survey telescopes find uL events @ low 
cadence over a wide area and issue alerts

Follow-up networks obtain high-cadence 
coverage of a few events at a time

e.g., PLANET used 1-m 
telescopes to follow

microFUN uses smaller 
telescopes to target rare, 
bright, high-magnification 
events



  

1st Microlensing planet

2.6 Mjup planet orbiting 0.6 Msun K-dwarf at >4.6 AU

Bond (2012)

OGLE-2003-BLG-235/MOA 2003-BLG-53



  

Low mass Planets

5.5 MEarth planet orbiting a 0.2 MSun star at >2.6 AU

Beaulieu et al. (2006)

OGLE-2005-BLG-390



  

Multiple planet systems I
OGLE-2006-BLG-109

0.5 Msun star

Planet b:

0.71 Mjup @ 2.3 AU

Planet c:

0.27 Mjup @ 4.5 AU

Gaudi et al. (2008), Bennett et al. (2010)



  

Microlensing planet search v2.0
Larger format cameras enable high-
cadence observations over a small number 
of fields covering ~10 deg2

MOA-II       2.2 deg2   2006-
OGLE-IV    1.4 deg2   2011-
KMTNet     4.2 deg2   2015-



  

Survey-only planets

MOA-2011-BLG-293 Yee+2013

OGLE-2012-BLG-0406 Poleski+2014



  



  

PART 2

Selection Effects



  

Selection effects

● Can divide into two groups
– Host star selection effects

– Planet selection effects



  

Event rate – how often will a star act 
as a lens

● Each star contributes: cross section (θE) x speed (μrel)

– Proportional to sqrt(Mass), f(distances), relative proper 
motions

● Sum over all stars
– Integrate over galactic density and kinematic distribution, 

and mass function
● ~60/40 split of bulge and disk lenses
● Distance affects Einstein ring radius (→probe a different region 

of systems at different distances)



  

Microlensing effectively probes all 
main sequence masses (<1 M

sun
)

● ~Kroupa IMF (M>0.5Msun, α=-1.3; M>0.5Msun, α=-2.3)

Mass range 
(M

sun
)

Microlensing 
rate

1 → 0.5 24%

0.5 → 0.25 29%

0.25 → 0.125 25%

0.125 → 0.0625 22%

Unfortunately, the host masses are not measured most of the time



  

But host mass is usually not 
measured

● Parallax measurement is needed for planetary 
events (and also rare finite source effects for 
the control sample)

● Some events are long enough for Earth's orbital 
motion to cause measurable parallax effects

● Spitzer and K2 are for the first time making 
systematic parallax measurements from space



  

Selecting the planet

● Essentially: What is the probability of 
encountering a caustic?



  

Caustics ~ Detection



  

Projected separation (s)           Mass ratio (q)  

● Caustic size
● ~q1/2 (planetary)
● ~q (central)
● ~q1/3 (resonant)

● Implies:

– Planetary caustics 
sensitive to low mass 
planets

– High-mag events only 
sensitive to more 
massive planets (i.e 
~Neptune+)



  

Projected separation (s)           Mass ratio (q)  

● Planetary caustic 
located at:

● s – 1/s

● Caustic size:
● ~s-2 (wide)
● ~s3 (close, 

planetary)
● ~s2 (close, central)



  

Also depends on image perturbation

● Major image 
magnification→1 as 
u→∞ 

● Minor image 
magnification→0 as 
u→∞ 

● => Wide planets can be 
found at any distance 
(though probability 
drops  if primary event 
required)



  

Putting it together



  

Putting it together



  

PART 3

From Detections to Abundances



  

Calculating detection efficiency

● Basically a brute-force injection-recovery tests
● Need to marginalize over 5(6) nuisance 

parameters

– t0, tE, u0, α, ρ, (also blending)

– when, duration, peak mag, direction, source size

● Result: Map of detection efficiency as a function 
of s,q

● Do on event-by-event basis



  

Calculating detection efficiency

Gaudi & Sackett (2000)

● In practice

– t0 known

– tE, u0, blending,  
known or well 
constrained

– ρ can be guessed

– Leaves α to explore



  

Planet exclusion plots – high-mag

Dong+2006



  

Planet exclusion plots – low-mag

Snodgrass+2004



  

Detection efficiency maps

High-magnification (Dong+2006) Low-magnification (Gaudi+2002)

25%



  

Results so far
● Cool planets

– N~M-0.7

– N~0.3 
giants/star

– ~2 FFPs/star

Gould+2010
Sumi+2011
Cassan+2012



  

New experiments will make robust 
demographics possible

● OGLE, MOA and KMTNet are conducting blind, 
high-cadence observations over ~10 sq degrees 
and will find 10s of planets per year

● Spitzer and K2 Campaign 9 are and will 
revolutionize mass and distance measurements for 
large samples of microlensing planets

● WFIRST-AFTA and EUCLID will measure the 
demographics of Earth- and Mars-mass planets 
from 1 AU outwards
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