Microlensing Planet Searches & their Selection Effects

Matthew Penny

Sagan Fellow, The Ohio State University penny@astronomy.ohio-state.edu

PART 1

Finding Planets with Microlensing

Microlensing Events

Source

Lens - host & its planet(s)

Gravitational Lensing Regimes

Galaxy ~Gpc ~10 kpc ~arcsec ~ 10^{-2}

Cluster ~Gpc ~Mpc ~arcmin ~1

Distance: R_{E} : θ_{E} :

Probability:

Micro = stars \sim kpc \sim AU \sim mas \sim 10⁻⁶

Stars as Lenses

Looking towards Galactic bulge:

Mass ~ 0.5 M_{sun}

Distances: lens~6 kpc source~8 kpc

 $R_E \sim 2.5 \text{ AU}$ $\theta_E \sim 0.4 \text{ milli-arcsec}$

Bulge stars have proper motions $\mu \sim 6$ mas/yr Microlensing is transient.

Event Timescale $t_E \equiv \theta_E / \mu_{rel} \sim 25 \text{ days}$

Microlensing Events I

Parameters:

- 1. Impact parameter *u*₀
- 2. Peak time to
- 3. Event timescale t_{E}

Microlensing Events II

Only the timescale contains physical information about the lens: $\theta_{\rm E} = 1 \sqrt{4GM D_{\rm ls}}$

$$t_{\rm E} \equiv \frac{\nu_{\rm E}}{\mu_{\rm rel}} = \frac{1}{\mu_{\rm rel}} \sqrt{\frac{4GM}{c^2}} \frac{D_{\rm ls}}{D_{\rm l}D_{\rm s}}$$

Three regimes of caustics

Three regimes of caustics

High-magnification events

- Implies the source will pass close to the lens
- Virtually 100% planet detection efficiency

Projected separation (s)

Mass ratio (q)

Inferring planet parameters

Planetary systems - perturbations

Days since 31 July 2005 UT

- $q = (ratio of durations)^2$
 - $\sim (0.5/40)^2$

~10⁻⁴; x0.3M_{sun}=15M_{Earth} ~ x r_E ~ 2 AU

 $s = time of deviation/t_{E}$

- $\sim 10/10 \sim 1$

Searching for Planets - Requirements

• Goal: Find 10 planets/year

	Jupiters		Earths	
Find 10/year		10 planets		10 planets
Detection efficiency	~10%	100 events	~1%	1000 events
Event rate (star ⁻¹ year ⁻¹)	~10 ⁻⁵	10^7 stars	~10 ⁻⁵	10 ⁸ stars
Stellar density (star deg ⁻²)	~1	10 ⁷ (ground)		10 ⁸ (space)
Image Resolution (arcsec)		~1.1		~0.36
Survey Duration	>2 t _E	>2 months	>2xt _E	>2 months
Survey Cadence	>3/t _{E,Jup}	>4/day	>3/t _{E,Earth}	>3/hour
Survey Area		>deg^2		>deg^2

Microlensing planet search v1.0

Survey telescopes find uL events @ low cadence over a wide area and issue alerts

Follow-up networks obtain high-cadence coverage of a few events at a time

e.g., PLANET used 1-m telescopes to follow

microFUN uses smaller telescopes to target rare, bright, high-magnification events

1st Microlensing planet

2.6 M_{jup} planet orbiting 0.6 M_{sun} K-dwarf at >4.6 AU

Low mass Planets

OGLE-2005-BLG-390

5.5 M_{Earth} planet orbiting a 0.2 M_{Sun} star at >2.6 AU

Multiple planet systems I OGLE-2006-BLG-109

OOLE uFUN Apekiane 14 uFUN New Mexico I magnitude **µFUN Farm Cove** 0.018 PLANET Concourt 15 Ð, 163820 3825 3830 3835 HJD-2450000.

0.5 M_{sun} star Planet b: 0.71 M_{iup} @ 2.3 AU Planet c: 0.27 M_{jup} @ 4.5 AU

Gaudi et al. (2008), Bennett et al. (2010)

Microlensing planet search v2.0

Larger format cameras enable highcadence observations over a small number of fields covering $\sim 10 \text{ deg}^2$

MOA-II2.2 deg²2006-OGLE-IV1.4 deg²2011-KMTNet4.2 deg²2015-

Survey-only planets

OGLE-2012-BLG-0406 Poleski+2014

HJD-2450000

PART 2

Selection Effects

Selection effects

- Can divide into two groups
 - Host star selection effects
 - Planet selection effects

Event rate – how often will a star act as a lens

- Each star contributes: cross section (θ_E) x speed (μ_{rel})
 - Proportional to sqrt(Mass), f(distances), relative proper motions
- Sum over all stars
 - Integrate over galactic density and kinematic distribution, and mass function
 - \sim 60/40 split of bulge and disk lenses
 - Distance affects Einstein ring radius (→ probe a different region of systems at different distances)

Microlensing effectively probes all main sequence masses (<1 M_{sun})

• ~Kroupa IMF (M>0.5 M_{sun} , α =-1.3; M>0.5 M_{sun} , α =-2.3)

Mass range (M _{sun})	Microlensing rate
1 → 0.5	24%
0.5 → 0.25	29%
0.25 → 0.125	25%
$0.125 \rightarrow 0.0625$	22%

Unfortunately, the host masses are not measured most of the time

But host mass is usually not measured

- Parallax measurement is needed for planetary events (and also rare finite source effects for the control sample)
- Some events are long enough for Earth's orbital motion to cause measurable parallax effects
- Spitzer and K2 are for the first time making systematic parallax measurements from space

Selecting the planet

• Essentially: What is the probability of encountering a caustic?

Caustics ~ Detection

Mass ratio (q)

- Caustic size
 - ~q^{1/2} (planetary)
 - ~q (central)
 - ~q^{1/3} (resonant)
- Implies:
 - Planetary caustics sensitive to low mass planets
 - High-mag events only sensitive to more massive planets (i.e ~Neptune+)

Projected separation (s)

• Planetary caustic located at:

- Caustic size:
 - ~s⁻² (wide)
 - ~s³ (close, planetary)
 - ~s² (close, central)

Also depends on image perturbation

- Major image magnification \rightarrow 1 as $U \rightarrow \infty$
- Minor image magnification $\rightarrow 0$ as $U \rightarrow \infty$
- => Wide planets can be found at any distance (though probability drops if primary event required)

Putting it together

PART 3

From Detections to Abundances

Calculating detection efficiency

- Basically a brute-force injection-recovery tests
- Need to marginalize over 5(6) nuisance parameters
 - t_0 , t_E , u_0 , α , ρ , (also blending)
 - when, duration, peak mag, direction, source size
- Result: Map of detection efficiency as a function of s,q
- Do on event-by-event basis

Calculating detection efficiency

- In practice
 - t_0 known
 - *t_E*, *u₀*, blending,
 known or well
 constrained
 - ρ can be guessed
 - Leaves α to explore

Gaudi & Sackett (2000)

Planet exclusion plots – high-mag

Planet exclusion plots – low-mag

Snodgrass+2004

Detection efficiency maps

Gould+2010 Sumi+2011 Cassan+2012

Results so far

New experiments will make robust demographics possible

- OGLE, MOA and KMTNet are conducting blind, high-cadence observations over ~10 sq degrees and will find 10s of planets per year
- Spitzer and K2 Campaign 9 are and will revolutionize mass and distance measurements for large samples of microlensing planets
- WFIRST-AFTA and EUCLID will measure the demographics of Earth- and Mars-mass planets from 1 AU outwards

References

Recent Reviews

- Gaudi (2012), *Microlensing Surveys for Exoplanets* http://adsabs.harvard.edu/abs/2012ARA%26A..50..411G
- Mao (2012), Astrophysical applications of gravitational microlensing http://adsabs.harvard.edu/abs/2012RAA....12..947M

• Other papers

- Gould (2000), A Natural Formalism for Microlensing http://adsabs.harvard.edu/abs/2000ApJ...542..785G
- Skowron et al. (2011), Binary Microlensing Event OGLE-2009-BLG-020 Gives Verifiable Mass, Distance, and Orbit Predictions (Appendix A) http://adsabs.harvard.edu/abs/2011ApJ...738...87S
- Han (2006), Properties of Planetary Caustics in Gravitational Microlensing http://adsabs.harvard.edu/abs/2006ApJ...638.1080H
- Poleski et al. (2014), Triple Microlens OGLE-2008-BLG-092L: Binary Stellar System with a Circumprimary Uranus-type Planet (makes binary lens code available on arxiv page) http://arxiv.org/abs/1408.6223
- Gaudi et al. (2002), Microlensing Constraints on the Frequency of Jupiter-Mass Companions: Analysis of 5 Years of PLANET Photometry http://adsabs.harvard.edu/abs/2002ApJ...566..463G