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Population synthesis
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GlobalPFE model
Minimum physical processes to consider

GlobalPFE: Toy global planet formation model for population 
synthesis built on the core accretion paradigm, assuming core 
growth via planetesimal accretion and disk driven migration 
(Ida & Lin 2004, Alibert et al. 2005, Mordasini et al. 2009)

3 modes of operation



Input file I: 



Input file II: 

Detailed description in Sect. 7.2 of documentation



Formation of a single planet

Pollack et al. 1996



Output file: 

Detailed description in Sect. 8 of documentation



Accretion of planetesimals I

v1 ⇡
p

e2 + i2 vKep

Growth by collisional accretion of background planetesimals

Safronov equation



Accretion of planetesimals II
Oligarchic growth during presence of gas disk

Orderly growth after dissipation of gas disk



Accretion of planetesimals III



Accretion of planetesimals IV
Accretion from a feeding zone with spatially constant planetesimal surface density ΣP

Wfeed = BLRH = BL

�
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The core accretion model : phase 1

Accretion of planetesimals

Formation of a core

Accretion rate of gas very low

Depletion of the feeding zone

MZ < critical mass

Frejus - 30 November 2004
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Without migration and planetesimal drift: 
!
Growth to the isolation mass

The density in planetesimals can be derived from the surface density of plan-
etesimals Σ and the velocity dispersion v

ρp ≈
√

3

2

ΣΩ

v
. (19)

The
√

3 term results from the 3D nature of the velocity dispersion. Combining
this with the equation for the growth rates we have:

dmp

dt
= ΣΩπR2

sFg. (20)

We learn from this equation that planets grow faster closer to the star, because
Ω and Σ are larger there and that it is also easier beyond the snow line (see
chapter by Alexander). Treating the growth rates more precisely one finds two
distinct growth modes: 1.) All planetesimals are at a similar size and grow at
the same speed. 2.) One object emerges from the population and eats up the
rest (oligarchic growth) As a result not all objects grow equally in this process,
but there are a few objects emerging from the planetesimal population (thus
oligarchic growth) to become the future terrestrial planets and cores of the
giant planets. This growth is the fastest closer to the star, as the densities and
relative velocities are larger there than further away from the star. Eventually
the planetary embryos are clearing out a gap around them in the planetesimal
formation due to exchange of torques between the dominating body and the
swarm of smaller guys. One can compare this to the shepherding moons in the
rings of Saturn. Thus they have a critical mass (isolation mass) up to which
they can grow, a mass which increases with the distance from the central
object (see Fig. 26). This isolation mass can be estimated as follows. If the
planet eats all the material in his feeding zone, e.g. the projection of the Hill

sphere (with radius Rh =
(

mp

3M⋆

)
1

3 ) onto the planet’s orbit (with radius r),
then growth stops.

misolation ≈ 4πr2Σ
(

mp

3M⋆

)
1

3

. (21)

Setting the planet mass mp to the isolation mass yields

misolation ≈
(4πr2Σ)

3

2

(3M⋆)
1

2

. (22)

Plugging in numbers for the solar nebula leads to

misolation ≈ 0.07
(

a

1AU

)3
(

Σ

10gcm−2

)3/2

M⊕. (23)
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Accretion of planetesimals V



Accretion of planetesimals VI
Core mass as a function of semi-major axis at 0.1 Myr (red), 1 Myr (green) and 10 Myr. 



Accretion of gas I
4 Mordasini et al.

BP86; Guillot 2005; Broeg 2010):

dm
dr = 4πr2ρ dP

dr = −Gm
r2 ρ

dl
dr = 4πr2ρ

(

ϵ − T ∂S
∂t

)

dT
dr = T

P
dP
dr ∇

(2)

In these equations, r is the radius as measured from the planetary cen-
ter, m the mass inside r (including the core mass MZ), l the luminosity
at r, ρ, P, T, S the gas density, pressure, temperature and entropy, t the
time, and ∇ is given as

∇ = d ln T
d lnP = min(∇ad,∇rad) ∇rad = 3

64πσG
κlP
T 4m (3)

i.e. by the minimum of the adiabatic gradient ∇ad which is directly
given by the equation of state (in convective zones) or the radiative
gradient ∇rad (in radiative zones) where κ is the opacity and σ is the
Stefan-Boltzmann constant.

Calculation of the luminosity

For the planetary population synthesis, where the evolution of thou-
sands of different planets is calculated, we need a stable and rapid
method for the numerical solution of these equations. We have there-
fore replaced the ordinary equation for dl/dr by the assumption that
l is constant within the envelope, and that we can derive the total lu-
minosity L (including solid and gas accretion, contraction and release
of internal heat) and its temporal evolution by total energy conserva-
tion arguments, an approach somewhat similar to Papaloizou & Nelson
(2005). We first recall that −dEtot/dt = L and that in the hydrostatic
case, the total energy is given as

Etot = Egrav + Eint = −

∫ M

0

Gm

r
dm +

∫ M

0
u dm =̇ − ξ

GM2

2R
(4)

where u is the specific internal energy, M the total mass, and R the
total radius of the planet. We have defined a parameter ξ, which repre-
sents the distribution of mass within the planet and its internal energy
content. The ξ can be found for any given structure at time t with the
equations above. Then one can write

− d
dtEtot = L = LM + LR + Lξ = ξGM

R Ṁ −
ξGM2

2R2 Ṙ + GM2

2R ξ̇ (5)

where Ṁ = ṀZ + ṀXY is the total accretion rate of solids and gas, and
Ṙ is the rate of change of the total radius. All quantities except ξ̇ can
readily be calculated at time t. We now set

L ≃ C (LM + LR) . (6)
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1D structure equations of 
planetary H/He envelope

Parameterization via KH timescale

pKH = 10.4 and qKH = −1.5, and κ = 10−2 g/cm2	





Accretion of gas II
Limits to gas accretion rate:

Gas accretion rate in the disk

Bondi rate



Accretion of gas III



Truncation of gas accretion I
1) At the gas isolation mass

2) Hard limit at gap formation

3) Decrease of rate due to gap formation 



Truncation of gas accretion II

…



Gas driven orbital migration I
1) Low mass planets: type I migration

2) High mass planets: type II migration if 



Gas driven orbital migration II

…



Gas driven orbital migration III



Structure gas disk
Initial profile

Y. Alibert et al.: Giant planet formation 345

The boundary conditions for this part of the calculation are
the same as in PT99, formally,

T (z = H) = T (τab, Tb, r, Ṁst,α), (4)

P(z = H) =
Ω2Hτab

κ(T (z = H), P(z = H))
, (5)

F(z = H) =
3

8π
ṀstΩ

2, (6)

and

F(z = 0) = 0. (7)

These conditions depend on three parameters: τab the optical
depth between the surface of the disc (z = H) and infinity,
Tb the background temperature, and Ṁst the equilibrium accre-
tion rate defined by Ṁst ≡ 3πν̃Σ where Σ ≡

∫ H

−H
ρdz is the usual

surface density, and ν̃ ≡
∫ H

−H νρdz/Σ. The values for τab and
Tb are the same as in PT99 (namely 10−2 and 10 K); the steady-
state accretion rate is a free parameter. As shown in PT99, the
structure obtained hardly varies with the first two parameters.

This system of 3 equations with 4 boundary conditions has
in general no solution, except for a certain value of H. This
value is found iteratively: Eqs. (1)–(3) are numerically inte-
grated from z = H to z = 0, using a fifth-order Runge-Kutta
method with adaptive step length (Press et al. 1992) until
F(z = 0) = 0 to a given accuracy.

Using this procedure, we calculate, for each distance to the
star r and each value of the equilibrium accretion rate Ṁst, the
distributions of pressure, temperature and density T (z; r, Ṁst),
P(z; r, Ṁst), ρ(z; r, Ṁst).

Using these distributions, we finally calculate the mid-
plane temperature (Tmid) and pressure (Pmid), as well as
the effective viscosity ν̃(r, Ṁst), the disc density scale height
H̃(r, Ṁst) defined by ρ(z = H̃) = e−1/2ρ(z = 0). The surface
density Σ(r, Ṁst) is also given as a function of Ṁst (for each
radius). By inverting this former relation, we finally obtain re-
lations Tmid(r,Σ), Pmid(r,Σ), ν̃(r,Σ) and H̃(r,Σ) for each value
of r (and each value of the other parameters α, τab and Tb).

2.1.2. Evolution of the surface density

The time evolution of the disc is governed by the well-known
diffusion equation (Lynden-Bell & Pringle 1974):

dΣ
dt
=

3
r
∂

∂r

[
r1/2 ∂

∂r
(ν̃Σr1/2)

]
=

1
r
∂

∂r
(rJ(r)) , (8)

where J(r) ≡ 3
r1/2

∂
∂r (ν̃Σr1/2) is the mass flux (integrated over the

vertical axis z). This equation is modified to take into account
the momentum transfer between the planet and the disc, as well
as the effect of photo-evaporation and accretion onto the planet:

dΣ
dt
=

3
r
∂

∂r

[
r1/2 ∂

∂r
ν̃Σr1/2 + Λ(r)

]
+ Σ̇w(r) + Q̇planet(r). (9)

The rate of momentum transfer Λ between the planet and
the disc is calculated using the formula derived by Lin &
Papaloizou (1986):

Λ(r) =
fΛ
2r

√
GMstar

(
Mplanet

Mstar

)2 ( r

max(|r − a|, H̃)

)4
, (10)

where a is the sun-planet distance and fΛ is a numerical con-
stant1. The photo-evaporation term Σ̇w is given by (Veras &
Armitage 2004):
{
Σ̇w = 0 for R < Rg,
Σ̇w ∝ R−1 for R > Rg,

(11)

where Rg is usually taken to be 5 AU, and the total mass loss
due to photo-evaporation is a free parameter. Finally, a sink
term Q̇planet is included in Eq. (9), to take into account the
amount of gas accreted by the planet. This term is generally
negligible compared to the other ones, except during the run-
away phases.

To solve the diffusion Eq. (9) we need to specify two
boundary conditions. The first one is given at the outer radius
of the disc (in our simulations this radius is usually taken at
50 AU). At this radius, one can either give the surface density
Σ or its temporal derivative. Since the characteristic evolution
time of the disc is the diffusion timescale

Tν ∝
r2

ν̃
∝ 1
αΩ

( r
H

)2
, (12)

which2 is proportional to r3/2 for discs of approximately con-
stant aspect ratio (which is the case in these models, see PT99)
the outer boundary condition has little influence.

The second condition is specified at the inner radius where
we have used the following condition:

r
∂ν̃Σ

∂r

∣∣∣∣∣∣
inner radius

= 0. (13)

Since the total mass flux through a cylinder of radius r is given
by:

Φ(r) ≡ 2πrJ(r) = 3πν̃Σ + 6πr
∂ν̃Σ

∂r
, (14)

the boundary condition Eq. (13) can be expressed as:

Φ(r)
∣∣∣∣
inner radius

= 3πν̃Σ = Ṁst, (15)

i.e. the mass flux through the inner radius is equal to the equi-
librium flux. Therefore, this condition is equivalent to say that
the inner disc instantaneously adapt itself to the conditions
given by the outer disc. As discussed in PT99, this is consistent
with the expression of the characteristic timescale as a function
of the radius (Eq. (12)).

2.2. Migration rate

Dynamical tidal interactions of the growing protoplanet with
the disc lead to two phenomena: inward migration and gap
formation (Lin & Papaloizou 1979, Ward 1997, Tanaka et al.
2002). For low mass planets, the tidal interaction is linear, and

1 In this formula, the disc scale height H̃ is the scale height of the
unperturbed disc, and not the scale height in the middle of the gap.

2 The second part of Eq. (12) is obtained by expressing Eq. (1) as
1
ρ

P
H ∼ Ω2H and then replacing the sound velocity by ΩH in the defi-

nition of ν.
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density Σ(r, Ṁst) is also given as a function of Ṁst (for each
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Evolution



Evolution of the gas disk
Exponential decrease and photoevaporation



Structure disk of solids

Evolution only 
via accretion 
onto the core



Output file: 

Detailed description in Sect. 8 of documentation



Formation of a planetary system
All initial conditions are kept constant, except for the semi-
major axis which is systematically varied between 0.1 and 100 
AU, distributed uniformly in log(a) (301 values)



Formation of a planetary system



Model limitations
As a toy model, GlobalPFE has many limitations. The most important are: 
!
1.One embryo per disk: no dynamics, no competition for gas and solids, 

no eccentricity excitation, no capture in mean motion resonances …  
2.Gas disk driven migration only (no scattering, no Kozai, no planetesimal 

driven migration). Only inward migration (loc. isothermal type I).  
3.Core growth by accretion of planetesimals only, no pebble accretion  
4.Simplistic disk model (fixed temperature profile, no viscous evolution, no 

real photoevaporation model)  
5.Simplistic gas accretion model (no calculation of the envelope structure)  
6.No evolution of the disk of solid: no dust/planetesimal drift, growth, 

fragmentation, no eccentricity/inclination evolution  
7.No planetary internal structure and evolution: the planetary radius and 

luminosity are not calculated. The effect of atmospheric escape/
envelope evaporation is also neglected. 



Thanks for your attention


