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Transiting Planets,
Large and Small

= Around 200 planets have
now been seen to transit their
parent stars, with measured
masses

= 180+ “hot Jupiters”

= 10+ “super Earths”

= Combination of planet
radius and mass yield density
--> composition

=Strong bias towards finding
mass/large planets on short-
period orbits

Doppler Shift due to
Stellar Wobble

Unseen planet
- - o- e




Equations of State of Planetary Materials

Temperature [K]
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EOS at High Pressure
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Giant Planet Evolution and Contraction: Key Ideas and Assumptions

= Giant planets are warm, fluid, and fully convective
= Convection is efficient and leads to an essentially adiabatic temperature
gradient

= H/He envelope is homogeneous and well mixed

= Heavy element core is distinct from H/He envelope

= |t is the radiative atmosphere that is the bottleneck for interior cooling
and contraction (atmosphere models are much more important here than
in stellar evolution)

= One “planet-wide average” pressure-temperature profile serves as the
upper boundary condition at a given age (no day/night difference)

= A Gyr ages, the vast majority of a giant planet’ s thermal energy is

remnant energy from its formation (the big collapse) still working it’ s way
out. There is little contraction at Gyr ages

How well does this work in our Solar System?




Our Gas Giant Prototypes: Jupiter and Saturn
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Our Ice Giant Prototypes: Uranus and Neptune

80-90% Heavy Elements by Mass
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Giant Planets May
Not be as Simple as
We Would Hope
Them to Be

Temperature (1000 K)

Wilson & Militzer (2011)
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Radius (Rg)

There is an incredibly diversity of worlds

= We can also characterize these planets, not just find them
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The shear number of
discoveries opens up the
prospect of understanding
gas giants (Jupiter-like), ice
giants (Neptune-like) and
lower mass planets as
classes of astrophysical
objects

What are these planets
made of ?

What is their interior
structure?

How do they compare to
Jupiter and Saturn?



Building a Model, I: Standard Cooling and Contraction
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1 M, planet with a 10 M core, at 0.05 AU from the Sun



Additional Power Inflates Radii, Heavy Elements Shrink Radii

Transit Radius
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For a given inflated hot Jupiter, we are blind to its composition,
since we do not know the magnitude of the additional power source




Building a Model, II: Additional Interior Power

*Lower mass planets

2.0 more easily influenced
by a given magnitude
| of power source
1.5

*Power levels are
generally small
compared to
Irradiation from the
parent star ~10%° erg/s

Radius [R,]

05| *1% “rule of thumb”
for giant planet
inflation is a pretty
poor rule, generally
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There is an emerging population of cool planets with no radius anomaly
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A strong correlation between star and planet abundances
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*Exoplanetary Heavy Element Enrichment Fits Solar System Patterns
*A quasi-uniform super-solar enrichment above ~ 1 M,
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Is the ice in Neptune-
class planets solid?

= No.
= All evidence for Uranus/
Neptune indicates that their
interiors are predominantly
fluid
= A fluid “sea” of partially
dissociated fluid H,0, NH,,
and CH,
® This is backed up by
models of dynamo-
generated magnetic field
= Experiments by Nellis et
al. on water and “synthetic
Uranus” mixtures
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Uncertainties in Understanding the
Interiors of Uranus and Neptune
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Uranus and Neptune DO NOT have 3 well-defined layers!



“Exo-Neptunes” Make it Even Worse
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But as we know from Uranus and Neptune, it is actually worse than this




What is the Nature of the Planet’s Atmosphere and Interior?

*Mass-Radius leads to degenerate solutions:
*Mostly water with a small rocky core
*A “failed” giant planet core?
*Lower ice/rock ratio, with a H/He envelope
*A mini Neptune?
What is the cooling history and interior state of these two
kinds of models?




Water World Model

Mini Rocky Neptune Model
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Perhaps the most sensible GJ 1214b models are those that are the
most like Uranus and Neptune, with a small rocky core thick
envelope of H/He dramatically enhanced in water (+other “ices”).

Nettelmann, Fortney, et al. (2011)




Kepler-11: A System Sculpted by Mass Loss?
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Conclusions

A measurement of mass-radius yields important information
about the structure of a gas giants

It appears on all gas giant are enhanced in metals compared
to their parent stars

Tidal heating may have been important for systems at young
ages, but generally not today

The hottest planets have the largest radii

No strong conensus yet on radius inflation mechanism, but it
is clearly correlated with incident flux

GJ1214b is likely a small cousin to Uranus and Neptune

Low-mass low-density planets are quite common
Atmospheric mass loss can sculpt the populations of
planets we see today



