

Properties of Stars from High-Precision Photometry

Bill Chaplin, School of Physics & Astronomy University of Birmingham, UK SAGAN 2012, NExScI, 2012 July 27

Bill Chaplin, School of Physics & Astronomy University of Birmingham, UK SAGAN 2012, NExScI, 2012 July 27

I(t1), I(t2), I(t3), I(t4), I(t5), I(t6)...

properties structure dynamics

- Minutes to hours...
 - Oscillations
 - Granulation
- Days to months...
 - Rotation
 - Activity
 - Damping of solar-like oscillations

- Asteroseismology
 - Stellar properties (including precise ages)
 - Structure (depth BCZ)
 - Internal rotation, stellar inclination
 - Stellar cycles, surface activity
- Rotational modulation
 - Surface rotation, activity
 - Ages from gyrochronology

- Cross-checks and linkages...
 - Ages (asteroseismology & gyrochronology)
 - Rotation (internal & surface)
 - Belt-and-braces for inclination, dynamics
- Complementary ground-based data are essential for constraining stellar properties (e.g., from asteroseismology)

θ Cyg: The brightest Kepler target

Guzik et al. (2012), in preparation

θ Cyg: The brightest Kepler target

Guzik et al. (2012), in preparation

Metcalfe et al., 2012, ApJ, 748, L10

UNIVERSITYOF

BIRMINGHAM

Metcalfe et al., 2012, ApJ, 748, L10

Stellar properties from asteroseismology

- Precise, accurate fundamental stellar properties for modelling exoplanet systems:
 - Densities, radii, masses
 - log(g) for "boot strapping" spectroscopic analysis
 - Ages! Comparison with gyrochronology

Stellar properties from asteroseismology

- Internal rotation, stellar angle of inclination:
 - Constraints on dynamical histories of stellar systems

Stellar properties from asteroseismology

- Intrinsic activity, variability of host stars, influence on local environment:
 - "Sound" stellar activity cycles
 - Constrain distribution of near-surface activity
 - Depths of convective envelopes, tests of stellar dynamos

asteroFLAG Hare and Hounds

Stello, Chaplin et al. 2009, ApJ

asteroFLAG Hare and Hounds

Testing asteroseismic inference

Hipparcos parallaxes

Testing asteroseismic inference with interferometry

Observations with CHARA

Huber et al., ApJ, 2012, submitted

Kepler 21b 1.6R_E planet orbiting bright F-type sub-giant

Howell et al. (2012), ApJ, 746, 123

Kepler 21b 1.6R_E planet orbiting bright F-type sub-giant

- Brightest Kepler exoplanet host star
- High-precision stellar properties from asteroseismology:
 - Stellar radius to 2.2%
 - Stellar mass to 4.5%
 - Stellar age to 12%
- Planetary radius to 2.4%

Kepler 22b 2.4R_E planet in habitable zone of Sun-like star

UNIVERSITY OF

BIRMINGHAM

Borucki et al. (2012), ApJ, 745, 120

Kepler 36b and Kepler 36c

Carter et al. (2012), Science, in the press

Carter et al. (2012), Science, in the press

Kepler 36: G-type subgiant

- High-precision stellar properties from asteroseismology:
 - Stellar radius to 1.2%
 - Stellar mass to 4.0%
 - Stellar age to 15%
- Key to providing strong constraints on planetary properties

Carter et al. (2012), Science, in the press

Asteroseismic ensemble tests Kepler Input Catalogue

Finds an underestimation bias in KIC radii

Verner et al., 2011, ApJ, 738, L28

"Sounding" stellar activity cycles: Sun

Three solar cycles with BiSON Sun-as-a-star data

scaled 10.7-cm radio flux

Cycles 22, 23... and rise of 24 BiSON Sun-as-a-star data

scaled 10.7-cm radio flux ---

scaled ISN

CoRoT reveals a short activity cycle in HD49933

UNIVERSITYOF

BIRMINGHAM

Stellar activity suppresses oscillations Inference on magnetic fields and convection

Chaplin et al., 2011, ApJ, 732, 5L

Stellar evolutionary sequences The "Sun in time"—sequence of one solar mass stars

UNIVERSITYOF

BIRMINGHAM

A selection of stars from Kepler's asteroseismic Zoo

Large frequency separations

UNIVERSITY OF

BIRMINGHAM

Convection zone depth From acoustic glitches

- Kepler example: solar-type dwarf
- Signal present in particular combinations of frequencies

UNIVERSITY^{of} BIRMINGHAM

Mazumdar et al., 2012, in preparation

Surface rotation periods

Kepler lightcurves of solar-type stars

Surface rotation periods

Hirano et al., ApJ, 2012, submitted

Gyrochronology

Meibom et al., ApJ, 2011, 733, L9

Gyrochronology

Meibom et al., ApJ, 2011, 733, L9

Rotational frequency splitting

Rotational frequency splitting

Rotational frequency splitting

Dipole mode

Asteroseismic & surface signatures of rotation

Trivial conversion between convert between surface period and frequency splitting

Asteroseismic & surface signatures of rotation

Given accurate stellar radius can convert between velocity and frequency splitting

Asteroseismic & surface signatures of rotation

- In main-sequence stars frequency splittings weighted to rotation in envelopes
- Seems to be like Sun, i.e. internal rotation measured by splittings similar to surface rotation

Inclination affects mode visibility

Inclination affects mode visibility

Gizon & Solanki, 2003, ApJ, 589, 1009

Inference on stellar inclination

Inference on stellar inclination

VERSITY^{OF} JIINGHAM